
Chronos: Towards Securing System Time in the
Cloud for Reliable Forensics Investigation

Shams Zawoad and Ragib Hasan
{zawoad, ragib}@cis.uab.edu

Department of Computer and Information Sciences
University of Alabama at Birmingham, AL 35294, USA

Abstract—In digital forensics investigations, the system time of
computing resources can provide critical information to implicate
or exonerate a suspect. In clouds, alteration of the system
time of a virtual machine (VM) or a cloud host machine can
provide unreliable time information, which in turn can mislead
an investigation in the wrong direction. In this paper, we propose
Chronos1 to secure the system time of cloud hosts and VMs in an
untrusted cloud environment. Since it is not possible to prevent
a malicious user or a dishonest insider of a cloud provider from
altering the system time of a VM or a host machine, we propose
a tamper-evident scheme to detect this malicious behavior at the
time of investigation.

We integrate Chronos with an open-source cloud platform –
OpenStack and evaluate the feasibility of Chronos while running
20 VMs on a single host machine. Our test results suggest that
Chronos can be easily deployed in the existing cloud with very
low overheads, while achieving a high degree of trustworthiness
of the system time of the cloud hosts and VMs.

I. INTRODUCTION

Throughout history, it has been observed that general
technological developments have continually created new
opportunities for criminal activities. This is also true for the
emergence of cloud computing. While the high degree of
scalability, very convenient pay-as-you-go service, and low
cost computing provided by clouds drive the rapid adoption
of clouds [1], [2], [3], [4], [5], these features can motivate a
malicious individual to launch attacks from machines inside a
cloud [6], [7], or use the cloud to store contraband documents
[8], [9]. In the investigation process of such cloud-based attacks,
the time associated with digital evidence can be very crucial
to discharge or convict a suspect [10].

It was reported that the primary suspect of a 1995 homicide
case claimed that he was at work at the time of the murder
and his alibi was the last configuration time of a Fastpath
network device [11]. Since the suspect had full control over the
management console of the device, investigators believed that
the suspect reset the time on the device from the management
console that supported his alibi. The management console
was not collected during the initial search and seizure and
hence, there was a high degree of uncertainty in the timestamp.
Eventually, the suspect’s alibi could not be confirmed and he
was convicted of the murder.

A similar situation can occur with the cloud, where a crime
is committed directly using the cloud, or where cloud activities

1Chronos: comes from ancient Greek, referred as the God of time.

can be used as evidence for any other crime. Therefore, we need
to make sure that the system clocks of cloud host machines
or virtual machines have not been tampered with. However,
an attacker can change a VM’s system clock before launching
an attack and later reset it to the original time. The following
hypothetical scenario illustrates the specific problem that we
intend to solve:

Bob runs a successful online business website. Mallory, a competitor
to Bob’s business, launched a distributed denial of service (DDoS)
attack using VMs rented from a cloud provider, CloudCo. The DDos
attack made Bob’s website unavailable on March 1st, 2015 from
10:00 am to 11:00 am. By analyzing Bob’s website record, Charlie, a
forensic investigator found that the website was flooded by some IP
addresses that were owned by CloudCo. Eventually, Charlie issued
a subpoena to CloudCo to acquire the activity logs of the VMs that
owned those IPs. However, Mallory was maintaining a backdated
system clock in her VMs at the time of attack, so Charlie found that on
March 1st, 2015 from 10:00 am to 11:00, there was no communication
between Mallory’s VMs and Bob’s website. With this contradictory
data, Charlie further requested for host machine’s logs. However,
before launching the DDoS attack, Mallory was able to collude with
a CloudCo employee and that employee set the same backdated time
in the host machine. Under this circumstance, Charlie would not be
able to prove Mallory as the attacker.

To mitigate the challenges discussed in the hypothetical
attack scenario, we propose Chronos, which ensures the trust-
worthiness of the system time of malicious cloud hosts and VMs
using a tamper-evident cryptographic scheme. To ensure the
desired security properties, we introduce a dedicated Chronos
Server (CS) with the existing OpenStack [12] architecture. First,
we run a secure pairwise time verification phase among the
cloud host, VM, and CS, where each entity verifies others’
system time. Second, information about the verification phase
is stored securely within CS using cryptographic hash-chain
of the verification results. After some certain epoch, the proof
of this hash-chain is published on the Internet. The hash-chain
and the proof of a chain ensure the detection of system time
alterations when a VM, host, and CS all are compromised. We
evaluate the feasibility of Chronos and identify various system
properties on a private cloud built on top of OpenStack.

Our Contributions:

• We propose Chronos to secure the system time of cloud
hosts and VMs in an untrusted cloud environment. The existing
works [13], [14] depend on the “happened before” relation
[15] and consider the cloud service provider (CSP) as honest.
However, not all the events occurred inside the cloud have the

happened before relation between them. Additionally, the cloud
is considered as untrusted in contemporary research works [16],
[17], [18], [19], [20], [21]. Chronos does not depend on the
“happened before” relation and also ensures the trustworthiness
of system time even when a CSP gets compromised or becomes
dishonest. Hence, Chronos increases the reliability of digital
forensics investigation in clouds.

• We rigorously analyze the threats on maintaining trustworthy
system time in clouds and present a threat model, which will
facilitate future research in this area.

• We evaluate the feasibility of Chronos by integrating it with
a private cloud built on top of OpenStack. Our test results
suggest that when a host machine runs in its full capacity,
executing the timestamp verification cycle in every 60 seconds
yields less than 1% system overhead for the cloud host machine.
Our test results also show that our implementation of Chronos
offers high degree of stability and fault tolerance.

Organization: Section II presents the related research works.
Section III describes the system model for a secure and
trustworthy system time. Section IV presents our proposed
scheme. Section V provides the security analysis of Chronos.
Section VI presents the experimental results. Section VII
discusses several critical issues about securing system time and
finally, we conclude in Section VIII.

II. RELATED WORK

Secure time synchronization and ordering of events in a
distributed system have been discussed by researchers from
different perspectives [10], [14], [15], [22], [23], [24]. To
identify out-of-sequence events in a distributed multi-process
system, Lamport et al. first introduced the happened before
relation between events [15] and proposed an algorithm to
synchronize events occurring in a distributed system. Later,
Gladyshev et al. defined event time bounding for digital
forensics using the happened before relation [13] and proposed
an algorithm to calculate time intervals of events by considering
their causal connections with other events whose time is known.
To determine the temporal behavior of a suspect computer,
Schatz et al. correlates timestamped events found on the
suspect computer with timestamped events from a more reliable,
corroborating source [25]. Stephens proposed a model to relate
timestamps taken from multiple timelines [26]. In this model, a
base clock is set to UTC, and subordinate clocks are defined in
terms of skews from parent clocks with additional skews further
generated from time drift rates. There has been substantial
research on secure timestamp synchronization in the field of
wireless sensor networks [27], [22], [28], which targeted to
secure communications and protect timing delay attacks by an
external intruder.

Secure timestamps were discussed in the literature of proving
the existence of a digital document prior to a specific point in
time [23], [29], [30], [31], [32]. In [32], Harber et al. proposed
that whenever a user needs a document to be time-stamped,
he/she sends the hash of the document to a time-stamping
service (TSS). The TSS then appends the date and time with
the hash, signs the compound object, and returns to the user. To

defend forward-dated or back-dated timestamp, TSS includes
bits from previous sequence of client request in the timestamp
certificate. Later, Bonnecaze et al. proposed a document time-
stamping scheme based on distributed TSS rather than a single
TSS, which ensures trustworthy time-stamping when less than
1/3 of the total TSS are malicious [30].

Thorpe et al. developed a log auditor by using the happened
before relation in clouds to detect temporal inconsistencies in
a VM’s timeline [14]. According to their scheme, if a VM
event A has a happened before relation with a VM event B,
while the VM kernel log suggests that timestamp TB of B
precedes timestamp TA of A, then TA and TB are inconsistent.
However, not all the events occurred inside clouds have the
happened before relation between them.

The proposed systems also do not consider the insider threats
when an employee of a CSP, or the CSP as a whole is dishonest.
Hence, the existing systems cannot solve the problem that we
address in this paper.

III. SYSTEM MODEL
A. Definition of terms
• Timestamp: Timestamp refers to the time given by the system
clock. The trustworthiness of the time attached with any type
of cloud evidence depends on the security of the timestamp
service.
• Chronos Server (CS): The Chronos Server (CS) verifies the
timestamp of cloud hosts and VMs. The CS is under the control
of the CSP and is responsible for storing all information about
the timestamp verification phase.
• Attestation (A): An attestation of a timestamp is a verifiable
statement from an entity supporting the truth value of the
timestamp of another entity.
• Certification (C): A certification is a verifiable statement from
one entity supporting the correctness of an attestation provided
by another entity. An attestation statement is preserved within
a certification statement.
• Certification-Chain (CC): The certification-chain maintains
the integrity of certifications using the hash-chain scheme.
• Certified-Timestamp (CT): The Chronos server preserves
the information of attestations, certifications, and certification-
chains in the form of a certified-timestamp.
• Proof of Time (POT): The POT is a cryptographic proof,
which is published to the Internet and is used to verify the
integrity of certified-timestamps.
• Requestor: A Requestor refers to the entity that wants to
verify its own timestamp.
• Verifier: A verifier checks the timestamp of a requestor
based on its own timestamp and provides an attestation to the
requestor.
• Certifier: A certifier validates an attestation statement issued
by a verifier and provides a certification about the validity of
the attestation.
• Auditor: An auditor is the court authority, which verifies the
correctness of the timestamps for a particular time range.
• Intruder: An intruder can be any malicious person including
an insider from the CSP, who wants to attack the attestation
and certification procedures.

B. Attacker’s Capability
While designing Chronos, we consider the following assump-

tions regarding the capabilities of adversaries:
1. In our threat model, a malicious user is capable of changing
the system time of the virtual machines that he/she rents from
a cloud service provider. An adversary, who is in control of
a compromised host or CS, can change the system time of
these machines. An external attacker or a dishonest employee
of the cloud provider, who colludes with a malicious user or a
dishonest investigator, can compromise a host and a CS.

2. The host and the CS can be honest at the time of timestamp
verification, but can collude later with users or investigators
to remove, reorder, or deny attestations and certifications. An
investigator does not participate in the timestamp verification
phase but can alter the attestation and certification information
after acquiring these from the cloud.

3. Users and CSPs have access to the network and hence are
capable of introducing an intentional delay in the timestamp
verification process.

4. An adversary cannot spoof the system time used in the
timestamp verification process. To do so, it requires the man
in the middle (MITM) attack while invoking a system call
to get the current timestamp. We assume that adversaries are
not capable for MITM attack and therefore, Chronos receives
timestamps from a trusted system call. This issue is further
discussed in Section VII.

5. We consider that no entity is capable of modifying the
implementation of the protocol. Hence, a malicious cloud
provider cannot prepare a VM image that does not include
the original implementation of Chronos. This issue is also
explained in Section VII.

C. Threat Model
There can be different types of attacks related to the alteration

of the system time, which are presented below:
• To hide the trace of any malicious activity using a cloud
VM, a user can alter the current system time of the VM to
any past or future time and later reset it to the actual time.

• A malicious user can collude with a dishonest employee of
a CSP, or can take control of the host machine so that the
timestamp of the VM and the host can be altered simultaneously
before any malicious activity and reset to the original time
afterwards.

• Beside the host, an attacker can compromise a CS to alter
the timestamps of the VM, host, and CS simultaneously.

• A dishonest employee of a CSP can change the host machine’s
timestamp to frame an honest user.
• VMs, hosts, and CSs can fraudulently claim each others’
valid timestamps as invalid, and vice versa.

• VMs, hosts, or CSs can deny any timestamp attestations and
certifications.

• A certification statement, which also includes the attestation
can be altered, removed, or reordered by a malicious CSP or
an investigator to save an attacker or to frame an honest user.

• VMs, hosts, or CSs can deliberately introduce timing delays
in the verification phase by packet dropping or jamming.
D. System Property

Based on the attacker’s capability and possible attacks, a
secure timestamp management system for clouds should ensure
the following integrity and availability properties:
I1: A user cannot alter the timestamp of a VM whether acting
alone or colluding with a compromised host without being
detected by auditors.
I2: A CSP, colluding with a malicious investigator cannot alter
the timestamp of the host or CS without being detected by
auditors.
I3: A CSP, or an investigator cannot modify any attestation
and certification statement nor can remove or reorder any
certifications without being detected by auditors.
I4: A user, colluding with a CSP cannot alter the timestamp of
the VM, host, and CS simultaneously without being detected
by auditors.
I5: While acting alone, a VM, host, or CS cannot fraudulently
claim the others timestamp as invalid without being detected
by auditors.
I6: A CSP or user cannot repudiate any attestations and
certifications.
A1: None of the entities can intentionally introduce any timing
delay in the timestamp verification stage.

IV. THE CHRONOS SYSTEM

In Chronos, three entities – VM, host, and Chronos server
(CS) participate in a timestamp verification protocol, where
each entity verifies the timestamp of others. Later, information
of the timestamp verification phase are stored securely using
cryptographic schemes. Before beginning the verification cycle,
VM and CS determine the Round Trip Time (RTT) with the
host. Validity of a requestor’s timestamp depends on the current
timestamp of the verifier and the RTT values. In Chronos, the
timestamp of one requestor is attested by two other entities
and each attestation is later certified by an entity other than
the verifier and requestor. Public key encryption and signature
generation take place in all the communications to preserve the
integrity of the scheme. At the end of each epoch, the proof
publisher Brizo2 prepares proofs of timestamp verification
phase and makes the proofs publicly available. One host
machine can make provision of multiple VMs and one CS
can serve multiple host machines. One Brizo can be used to
publish proofs collected from multiple Chronos servers.
A. Message Definitions
Notation: We use VM, H, and CS as the identity of the virtual
machine, host, and Chronos server respectively. Hash(M) is
a collision resistant, one-way hash function, which produces
a hash of a message M . The SK(M) function generates a
signature of a message M using a secret key K. An attribute
of a message is represented by MessageIdentity.Attribute.
For concatenation of two messages, we use the symbol ‘|’. A
tuple is encapsulated in ‘<>’.

2Brizo: comes from ancient Greek, referred as the patron Goddess of sailors,
who sent prophetic dreams

Verification Request Message: Given ReqID is the re-
questor’s identity and TReqID is the timestamp of the requestor,
a verification request message is defined as follows:

V RReqID =< SKReqID
(TReqID), TReqID >, (1)

where SKReqID (TReqID) is the requestor’s signature on the
requested timestamp using its private key KReqID.

Attestation Message: An attestation message AV erID ReqID

is defined as follows:

AV erID ReqID =< SKV erID
(AIV erID ReqID), AIV erID ReqID >,

(2)

where the attested information (AI) is generated as follows:

AIV erID ReqID =< Response(R), AT ime, TReqID, ReqID, V erID >
(3)

Here, Response(R) is either true or false based on the
verification result, ATime is the attestation timestamp, TReqID

is the requested timestamp, ReqID is the requestor’s identity,
and V erID is the verifier’s identity.

Certification Message: A certification message CCertID V erID

is defined as follows:

CCertID V erID =< SKCertID
(CICertID V erID),

CICertID V erID >
(4)

The certified information CICertID V erID is shown below:

CICertID V erID =< AV erID ReqID, Response(R),

CT ime, V erID,CertID >,
(5)

where Response (R) is ether true or false depending on the
validity of the attestation message. CTime is the certification
timestamp, CertID is the certifier’s identity, V erID is the
verifier’s identity, and AV erID ReqID is the attestation message
that is being certified.

Certification-Chain (CC): The Certification-Chain (CC) pre-
serves the integrity of the certification messages, which is
defined as follows:

[CCReqID]new =< Hash([CCertID V erID]new|[CCReqID]prev) >
(6)

Here, [CCReqID]prev is the certification-chain, which was
calculated for the previous certification message. If there is no
previous certification message, a constant value can be used
for the [CCReqID]prev.

Certified-Timestamp (CT): A certification message and its
associated certification-chain are stored in a persistent storage
in the form of a Certified-Timestamp (CT), which is constituted
of CCertID V erID and CCReqID,

CTReqID =< CCertID V erID, CCReqID > (7)

Proof of Time: If [CCReqID]N is the last certification-chain
at the end of an epoch, the proof of time POTReqID for that
epoch is generated as follows:

POTReqID =< SKCS
([CCReqID]N), [CCReqID]N > (8)

VM Chronos Server Host

1.
VRVM

2. Attest(VRVM)

VRVM ,	
 VRH , AH-VM

4. Attest(VRVM), Attest(VRH)

5. Certify(AH-VM)

VRCS , ACS-H , ACS-VM

7. Attest(VRCS)

8. Certify(ACS-VM)

VRH ,VRCS , AH-CS , ACS-H

10. Attest(VRH), Attest(VRCS)

11. Certify(AH_CS), Certify(ACS_H)

AVM-H, AVM-CS
CVM-H, CVM-CS 13. Certify(AVM-CS)

AVM-H, CVM-H , CH-VM
CH-CS , CVM-CS

15. Certify(AVM-H)

 16. PrepareCTCS(CVM-H , CH-VM)
PrepareCTVM(CH-CS, CCS-H)

PrepareCTH(CVM-CS , CCS-VM)

3.

6.

9.

12.

14.

KVM , RTT
MTA, MCA, FV

KH , RTT
MTA, MCA, FV

KCS , RTT
MTA, MCA, FV

Fig. 1: Timestamp verification protocol

B. Timestamp Verification Protocol
We assume that before the verification phase is run, VM,

host, and CS have setup their public and private keys (PK, K)
and distributed the public keys. Additionally, VM and host
setup RTTV M H ; host and CS set up RTTH CS . The values of
the two RTTs are calculated from the time difference between
sending a hello message from one entity to another through a
secure channel and receiving a response. Hence, computation
time for signature generation and signature verification are
included with the value of the RTTs. There are three other
properties that are constant throughout each verification cycle:
maximum tolerable timestamp error for attestation (MTA),
maximum tolerable timestamp error for certification (MTC),
and the frequency of the verification cycle being simulated
(FV). We assume that all the entities are in the same time zone.
Figure 1 shows the Chronos timestamp verification protocol
and details of the protocol are described below:

1. The verification protocol starts with a VM sending verifica-
tion request message V RV M to the host machine.

2. Upon receiving a V RV M message, the host first verifies
the signature of the message to make sure that the message
comes from a trusted VM. Signature verification is mandatory
in all the communications of the protocol. Here, the host is the
verifier and VM is the requestor; hence, the attested information
is denoted as AIH V M and response of AIH V M message is

determined as follows:

AIH V M .R =


True, |TNH − (TV M

+RTTV M H)| ≤MTA

False, Otherwise

(9)

Here, TNH is the current timestamp of the host. Equation
9 determines the validity of the VM’s timestamp with respect
to TNH and RTTV M H . Since it requires RTTV M H time to
send a message from VM to host, TNH must be close to
(TV M + RTTV M H) for the response AIH V M .R to be true;
otherwise, the response is false. A false response does not
terminate the timestamp verification protocol; in Chronos, a
false response is recorded the same way that a true response
is recorded. Once the response is determined, the host creates
the attestation message AH V M using Equations 2 and 3.
3. The host issues a timestamp verification request V RH to
the CS. It also sends the V RV M message received from the
VM and the attestation message AH V M to the CS.
4. The CS attests the requested timestamps of the VM and
the host, and builds attestation messages ACS V M and ACS H

respectively. The response of AICS V M is determined as
follows:

AICS V M .R =


True, |TNCS − (TV M+

RTTV M H +RTTH CS)| ≤MTA

False, Otherwise

(10)

Here, TNCS is the current timestamp of the CS. The CS
receives the timestamp of the VM, TV M , from the host. There-
fore, if the difference between TNCS and (TV M +RTTV M H +

RTTH CS) is within the range of MTA, the response is true,
and false otherwise. Next, response of the AICS H message is
determined as follows:

AICS H .R =

{
True, |TNCS − (TH +RTTH CS)| ≤MTA

False, Otherwise
(11)

In this case, timestamp of the host, TH , is directly sent from
the host to the CS. Hence, for a valid TH , the current timestamp
of the CS, TNCS , should be close to (TH +RTTH CS).
5. To detect a fake attestation by a host, the CS checks and
certifies the attestation message AH V M . If the CS attests V RH

as invalid, the CS also certifies the attestation message AH V M

as false. Otherwise, the CS goes for further checking. Since
the current time of host in Equation 9, TNH , is actually the
verification time AIH V M .AT ime, d1 = |AIH V M .AT ime −
(TV M + RTTV M H)| ≤ MTA should be held true when the
response AIH V M .R is true.

The host creates the V RH just after verifying the VM’s
timestamp. Hence, the requested timestamp of the host, TH ,
should be close to the verification time AIH V M .AT ime. We
denote the difference of these two timestamps as d2 =

|TH −AH V M .AT ime|. The CS now determines the response
of CICS H according to Algorithm 1, where the arguments of
the DetermineCertifyResponse method are AIH V M , d1, and
d2. Using the response value, the CS creates the certification
message CCS H according to Equations 4 and 5.
6. The CS sends attestation messages ACS H , ACS V M , and
the verification request message V RCS to the host.

Algorithm 1 Determining response of certification
1: DetermineCertifyResponse(AI, d1, d2)
2: if (AI.response = True)
3: if ((d1 + d2) ≤MTC) response = True
4: else response = False
5: else
6: if ((d1 + d2)>MTC)) response = True
7: else response = False

8: return response

7. In this step, the host attests the requested timestamp of the CS,
TCS . If the requested timestamp of the CS is valid, the current
timestamp of host, TNH , should be close to (TCS +RTTH CS).
Therefore, the response of the attestation information, AIH CS ,
is determined as follows:

AIH CS .R =

{
True, |TNH − (TCS +RTTH CS)| ≤MTA

False, Otherwise
(12)

After determining the response, the host creates the attesta-
tion message AH CS according to Equations 3 and 2.
8. In this step, the host certifies the attestation message
ACS V M . If the host attests V RCS as invalid, the response
of the certification CIH CS .R becomes false; otherwise, the
host goes for further checking. According to Equation 10,
d1 = |AICS V M .AT ime − (TV M + RTTV M H + RTTH CS)| ≤
MTA as AICS V M .AT ime = TNCS . The CS creates the
V RCS just after verifying the VM’s timestamp. Hence, d2 =

|TCS−AICS V M .AT ime| should be small. Using AICS V M , d1,
and d2 as the arguments in Algorithm 1, the host identifies the
response of the CIH CS and creates the certification message
CH CS according to Equations 4 and 5.
9. The host sends attestation messages AH CS and ACS H , and
verification request messages V RH and V RCS to the VM.
10. In this step, the VM first attests the requested timestamp
of host, TH . Though the message V RH is directly sent from
the host to the VM, the message was actually created in step
3. After that, the message was attested by the CS and the host
received the attestation results back from the CS. Hence, while
comparing the requested timestamp of the host, TH , with the
current timestamp of the VM, TNV M , we need to consider two
RTT values: RTTV M H and RTTH CS . For a valid TH , current
timestamp of the VM should be close to (TH + RTTV M H +

RTTH CS). Accordingly, verification response of AIV M H is
determined as follows:

AIV M H .R =


True, |TNV M − (TH +RTTV M H

+RTTH CS)| ≤MTA

False, Otherwise

(13)

Next, the VM attests the timestamp of the CS. The veri-
fication request message V RCS is sent from the CS to the
VM via the host. Hence, the two RTT values are involved in
determining the validity of the CS’s timestamp. Therefore, the
verification response of AIV M CS can be determined by the
following Equation:

AIV M CS .R =


True, |TNV M − (TCS +RTTV M H

+RTTH CS)| ≤MTA

False, Otherwise

(14)

11. The VM certifies two attestation messages AH CS and
ACS H . The response of the certification information CIV M H

is determined as follows:
First, if the VM attests V RH as invalid, it also certifies the

AH CS as invalid. Moreover, since TNH = AIH CS .AT ime,
d1 = |AIH CS .AT ime − (TCS + RTTH CS)| ≤ MTA, when
AH CS is valid (Equation 12). Additionally, d2 = |TH −
AIH CS .AT ime| should be small. Now, using AIH CS , d1, and
d2 as the arguments in the Algorithm 1, the VM identifies the
response of the CIV M H . Next, the response of certification
information CIV M CS is determined as follows:

The VM certifies ACS H as invalid, if it attests the V RCS as
false. Since TNCS = AICS H .AT ime, if the timestamp of CS
is valid, d1 = |AICS H .AT ime − (TH + RTTH CS)| ≤ MTA

(Equation 11). Here, d2 = |TCS − AICS H .AT ime| should be
very small. Using AICS H , d1, and d2 as the arguments in the
Algorithm 1, the VM identifies the response of the CIV M CS .
12. The VM sends attestation messages AV M H and AV M CS ,
and certification messages CV M H and CV M CS to the host.
13. In this step, the host certifies AV M CS . If the response of
the attestation message AH V M was false in the step 2 of the
protocol, the host certifies AV M CS as invalid. When a honest
VM attests TCS as valid, according to Equation 14, d1 =

|AIV M CS .AT ime− (TCS + RTTV M H + RTTH CS)| ≤ MTA

as AIV M CS .AT ime = TNV M . Now, between step 10 (when
the VM attest V RCS) and step 1 (when the VM first issues the
V RV M), we observe two rounds of message transfers between
the VM and the host, and the CS and the host. Hence, if there
is no unwanted network delay, d2 = |TV M + 2RTTV M H +

2RTTH CS − AIV M CS .AT ime| should be very small. Using
AIV M CS , d1, and d2 as the arguments in the Algorithm 1, the
CS determines the response of the CIH V M .
14. The host sends the attestation message AV M H and
certification messages CV M H , CH V M , CH CS , and CV M CS

to the CS.
15. In this step, the CS certifies AV M H . The CS certifies
AV M H as invalid if it attested V RV M as invalid in step
4. Otherwise, the CS will go for further checking. Since
AIV M H .AT ime = TNV M , d1 = |AIV M H .AT ime − (TH +

RTTV M H+RTTH CS)| ≤MTA when AIV M H is valid (Equa-
tion 13). As discussed in step 13, d2 = |TV M + 2RTTV M H +

2RTTH CS −AV M H .AT ime| should be very small if the VM
is honest. Using AIV M H , d1, and d2 as the arguments in the
Algorithm 1, the CS determines the response of the CICS V M .

16. In the last step of the protocol, the CS stores all the
certification information in a persistent storage. To maintain
the integrity of the certification records, the CS uses Equations
6 and 7 to generate a tuple for the storage. For example,
the PrepareCTVM method generates a CCV M from CH CS

according to Equation 6, creates CTV M by following Equation
7, and stores the CTV M in the storage. By following the
same approach, this method creates and stores another CTV M

generated from CCS H . The others methods, PrepareCTCS

and PrepareCTH similarly generate and store CTCS and CTH

respectively.

Prepare and Publish Proofs: Chronos server stores the
attestations and certifications, which are prepared by the
VM, host, and CS. However, a dishonest cloud provider can
alter the traces stored within the CS. Hence, the CS creates
POTCS , POTV M , and POTH using Equation 8 and all of the
proofs of traces will be published publicly by Brizo at regular
intervals. Later, an auditor can use the published proofs of
traces to detect alteration of attestations and certifications.

C. Verification by Auditor

Having Chronos integrated with the cloud, an investigator
can gather all the certified timestamps of the time range that
is under inspection and present to the auditor. To verify the
integrity of the certified timestamps, CTV M , CTH , and CTCS ,
provided by the investigator, an auditor collects the proof of
time POTV M , POTH , and POTCS .

Integrity Verification: The auditor needs to check whether
the certified timestamps provided by the investigator have
been tampered with or not. A malicious cloud provider or
dishonest investigator can alter the attestation or certification
information. The auditor should be able to detect any alteration
of attestations or certifications during the verification process.

Here, we consider the certified timestamps of only one entity
to present the integrity verification phase. The verification
process that is presented in Figure 2 starts with verifying
the signature of the CS on the proof of time (POTReqID).
After satisfying with the signature, the auditor extracts the
certification messages, C0..CN , from certified timestamps
[CTReqID]0...[CTReqID]N and sorts them according to the
certification timestamp (CTime). Next, applying Equation
6 on all the certifications chronologically provides the last
certification-chain value, [CCReqID]G. This value should match
with the certification-chain [CCReqID]N of Equation 8 to prove
that the certified timestamps have not been tampered with.

POTReqID

Equal?No

Accept

Yes

Reject

Valid?

No

[CCReqID]N

[CTReqID]0, [CTReqID]1, …. [CTReqID]N

C0, C1, …. CN

[CCReqID]G

Yes

Fig. 2: Process flow for integrity verification

V. SECURITY ANALYSIS

In this section, we discuss how Chronos ensures the security
properties mentioned in Section III-D.

Claim 1: Chronos ensures that a user cannot alter a VM’s
timestamp whether acting alone or colluding with a host
without being detected. (Property I1)

Justification. According to Equations 9 and 10, any changes
in the timestamp of a VM, which is greater than MTA can be
detected by a host and CS respectively. A colluding host can
maintain the same fake time as the VM and attest the VM’s
false timestamp as valid. However, as both the VM and the host
maintain false time, the CS can detect this alteration according
to Equations 10 and 11. Additionally, the certification stage
can detect fake attestation by two colluding entities. Hence, as
we discussed in step 5 and 15 of the Chronos protocol, even
if the host and the VM attest each other’s fake timestamps as
valid, the CS will certify the attestations of the VM and host
(AH V M and AV M H) as invalid. Thus, because of the presence
of an honest CS, users cannot alter the VM’s timestamp even
after colluding with a host without being detected by an auditor.

Claim 2: Chronos ensures that a CSP, colluding with a
malicious investigator cannot alter the timestamp of the host
or CS without being detected. (Property I2)

Justification. If the host machine’s timestamp is altered, CSs
and VMs can detect this modification while attesting a host’s
timestamp request, V RH , using Equations 11 and 13. However,
if the CS also gets compromised, adversaries can maintain
the same false timestamp in the CS and the host machine.
Such a CS and host will attest each other’s timestamp as
valid, and both will attest the VM’s timestamp as invalid. The
malicious behavior of the host and the CS can be detected
from the response of the attestations AV M H and AV M CS ,
when a VM verifies the timestamp of a host and a CS. In this
scenario, the VM will also certify the attestation AH CS and
ACS H as invalid according to our discussion about step 11
of the protocol. On the other hand, timestamp requests and
attestations of an honest VM will be certified as false by a
compromised host and CS. In this case, the auditor can decide
about the honesty of a user or CSP based on a collection of
attestations and certifications issued by all the VMs hosted on
the suspected host machine. As VM owners are honest in this
case, attestations and certifications issued by all of the VMs
will indicate that timestamps of host and CS are invalid.

Claim 3 Chronos detects modification, removing, and reorder-
ing of attestations and certifications by any entity (user, CSP,
and investigator) (Property I3)

Justification: When a CSP or an investigator alters any of
the attestation or certification information, this will change the
certified timestamps. As we illustrated in Figure 2, when an
adversary alters, removed, or reordered any of the certified
timestamps CTReq, the [CCReqID]G will not match with the
[CCReqID]N according to the hash-chain scheme. However, the
[CCReqID]N is signed by the CS and published to the Internet.
Hence, using the proof of time, POTReqID, any modification,
removal, and reordering of certified timestamps can be detected
by the auditor.

Claim 4 Chronos ensures that a user, colluding with a CSP
cannot manage to alter the timestamp of the VM, host, and
CS simultaneously without being detected. (Property I4)

Justification: Let us assume that a CSP and a user were
honest until T1 timestamp, i.e., until T1, host, CS, and VM

generated trusted attestations and certifications. Later, the CSP
and the user colluded and set the timestamp of the VM, host,
and CS to T2, where T2<T1. Certifications for T2 was added
to the certification-chain CC, where the last certification in the
chain had timestamp T1. During verification, the auditor sorts
the certifications by certification timestamps. Therefore, the
auditor generated [CCReqID]G will not match with [CCReqID]N .
Without violating the chain, a user or CSP cannot place
[CTReqID]T2 before [CTReqID]T1.

Now, let us assume that a CSP and a user set a false
timestamp T3 in the host, CS, and VM, where T3>T1. Later,
they reset the timestamp to actual timestamp T4, where T4<T3.
Without violating the certification-chain a user or CSP cannot
place [CTReqID]T4 before [CTReqID]T3. If the VM or host
does not reset their time to the actual timestamp, this can be
trivially detected from the timestamp associated with the latest
certification and attestations.

A user and a CSP could also be dishonest from the very
beginning and maintained a fake timestamp, which is less than
the actual timestamp. Later, they can reset the timestamp to
actual time this alteration cannot be detected by using the
hash-chain. For such an attack, auditors can determine the
trustworthiness of the timestamp from the attestations and
certifications of other honest, tenant VMs served by the same
CS and host. The honest VMs will not attest and certify the
timestamp of host and CS as valid. Therefore, if the majority
of the VMs (greater than 50%) detect hosts and CS timestamp
as false, the auditor determines the CSP and the colluding
user as dishonest. The required percentage to determine the
majority can vary with the size and type of clouds.

Claim 5 Chronos ensures that while acting alone, a VM, host,
or CS cannot fraudulently claim the others timestamp as invalid
without being detected. (Property I5)

Justification: Because of the certification stage, the proposed
system ensures that a VM, host, or CS cannot fraudulently
claim the others timestamp as invalid while acting alone. A
verifier with a fake timestamp can attest an honest requestor’s
timestamp as false. However, such an attestation will be
certified as false by the honest certifier. When one entity attests
two of the other entities timestamp as invalid, both of the
attestations will be certified as invalid by the honest entities.
For example, when a malicious VM attests the timestamp of a
trusted host as false, this attestation will be certified as false by
an honest CS. Similarly, the trusted timestamp of the CS, which
is attested as false by the malicious VM will be certified as
invalid by the honest host. Hence, when the VM, host, and CS
are acting alone, they cannot fraudulently claim each other’s
timestamp as invalid.

Claim 6 Chronos ensures non-repudiation of attestations and
certifications by users and CSPs. (Property I6)

Justification: After attesting a timestamp or certifying an
attestation, users or CSPs cannot repudiate the attestations
and certifications, since these are signed by a user’s and
CSP’s private key. Nobody, other than the owner of a private
key can use the key to sign the attestation and certification

information. Hence, if an attestation message has the AI with
a valid signature, a CSP or user cannot repudiate the attestation.
Similarly non-repudiation of certification is also ensured.
Claim 7 Chronos identifies any unwanted timing delay in-
troduced by a VM, host, or CS at the time of certification.
(Property A1)

Justification: We prove this claim by considering the host
as the responsible entity for introducing timing delay. The
host forwards the verification request V RV M to the CS after
attesting the VM’s timestamp. Hence, the attestation time,
AIH V M .AT ime, and the timestamp that the host wants to
verify, TH , should be very close to each other. As we discuss in
step 5 of the protocol, while certifying AH V M , the CS checks
the temporal locality of the attestation time AIH V M .AT ime

and requested timestamp TH , and can detect any timing delay.
The verification request V RCS is sent from a CS to a VM

via the host. Hence, a similar kind of timing delay attack
can be launched by a malicious host. If the host introduces
the delay, it will be identified by a VM while certifying
AH CS . In step 11 of the protocol, the VM checks the temporal
locality of the attestation time AH CS .AT ime and the timestamp
requested by the host, TH . Hence, it is not possible for a
host to introduce timing delay in CS’s verification request
without being identified by a VM. We can show similar proofs
considering the VM and the CS as the attacking entity.

VI. IMPLEMENTATION AND EVALUATION

Dashboard
(Horizon)

Proof
Publisher

(Brizo)

Chronos
Server

Compute
(Nova)

Chronos
Handler

Provides UI

Proof
API

VM

Chronos
Handler

Timestamp Verification

Timestamp
Verification

Hosts

Proof of
Timestamp

Web

Fig. 3: Chronos for OpenStack-based clouds

A. Implementation

We integrate Chronos with an OpenStack-based private
cloud. Figure 3 presents the integration of the Chronos server
and the proof publisher (Brizo) with the OpenStack cloud.
In OpenStack, VMs are hosted on the Nova compute node
and both are enhanced with a new component — Chronos
Handler that participates in the timestamp verification process.
We augment the OpenStack Dashboard (Horizon) module to
display and collect the attestation and certification messages.
Using the proof collection API provided by the Chronos server,
Brizo collects the proofs of timestamps, POTs, at the end of
each epoch and publishes the proofs to the Internet.
System Configuration: Our cloud is running on one cloud
controller and one Nova compute node. The Nova compute
and Chronos server have four Intel(R) Xeon(R) CPU E31220
(3.10GHz) processors with 32GB RAM and 8MB cache. For

our experiment, we integrate Brizo with the Chronos server.
However, for large-scale deployment, a dedicate machine for
Brizo would be preferable. We used 20 m1.small instances,
running the Ubuntu 12.04.4 LTS operating system as VMs.
The hardware configurations of node controller allowed us
to run a maximum 20 m1.small instances. The CPUs of the
VMs are single core Intel Xeon E312xx (Sandy Bridge) 3.10
GHz with 2GB RAM and 4MB cache. We used OpenJDK
(version:1.6.0 27) to implement the Chronos protocol. We used
RSA (2048 bit) for signature generation and SHA-2(SHA-256)
hash function for hashing.

B. Evaluation

Identifying Optimum MTA and MTC: The two threshold
values: maximum tolerable timestamp error for attestation
(MTA) and for certification (MTC) play vital roles in the
timestamp verification protocol. We identified the optimum
value for these two properties based on the true positive (TP)
rate for attestations and certifications. True positive means
all of the entities are honest and according to Chronos, all
of the entities attest and certify each other as honest. Since
MTA and MTC depend on the RTT , we chose these two
properties as different factors of the RTT and measured the
true positive rate. To identify the TP rate, we run Chronos in
all of the 20 VMs simultaneously, where each VM runs 1,000
cycles of the protocol. Hence, cumulatively the TP rate was
identified from 20,000 cycles of the protocol. Figure 4 justifies
the MTA and MTC identification, where the X-axis shows
different configurations and Y-axis represents the TP rate of
attestations and certifications. Since increasing the threshold
values not only increases the TP rate but also increases the false
positive (dishonest entity detected as honest) rate, our goal
was to find the lowest MTA and MTC with the highest true
positive rate. We started with the configuration C7 and gradually
decreased the value of MTA and MTC. At configuration C5,
the rate of TP dropped for certifications. Hence, we increased
the MTC value again and gradually decreased the value of
MTA. Later, we noticed 100% TP rate for the configuration
C3 (MTA = 0.8 ∗RTT and MTC = 1.5 ∗RTT). When we
decreased the MTA and MTC values below the configuration
of C3, the TP rate decreased again. Hence, we determined
configuration C3 as the optimum configuration.

C1 C2 C3 C4 C5 C6 C7
Configurations

0

20

40

60

80

100

%
 T

ru
e

Po
si

tiv
e

TS Attest VM
TS Attest Host
TS Certify VM
TS Certify Host

Host Attest VM
Host Attest TS
Host Certify VM
Host Certify TS

VM Attest Host
VM Attest TS
VM Certify Host
VM Certify TS

Configuration MTA MTC

C1 0.5∗RTT 1.5∗RTT
C2 0.6∗RTT 1.5∗RTT
C3 0.8∗RTT 1.5∗RTT
C4 RTT 1.5∗RTT
C5 RTT RTT
C6 1.5∗RTT 1.5∗RTT
C7 2∗RTT 2∗RTT

Fig. 4: Identifying MTA and MTC

Identifying Frequency of Verification (FV): Long time
durations between the timestamp verification cycles gives a
sufficient window for timestamp alteration attack, which will
remain undetected. Conversely, running the verification protocol
very frequently introduces higher system overhead. Hence, our
target is to run the verification protocol as frequently as possible,
which keeps the system overhead in a tolerable range. As
illustrated in Figure 5, the system overhead of the host increases
while increasing the number of VMs and the frequency of
verification protocol. We measured the system overhead from
the CPU performance information of SysBench [33]. Using
the least square optimization method, we approximated the
relation between system overheads, number of VMs (nVM),
and FV for 10 VMs, which is defined as follows:

%Overhead = nVM ∗ 0.05 + nVM ∗ 0.4 ∗ exp(−0.3 ∗ V F) (15)

According to Equation 15, the lowest and highest residual
sum of squares (RSS) found for 1 to 10 VMs are 0.02 and 6.18
respectively. Later, we tested this hypothesis for 20 VMs and
the RSS value was 0.89, which was inside the previously found
range. From the Figure 5, we also notice that the hypothesis
derived from 1 to 10 VMs is very close to the actual results
for 20 VMs. Hence, from Equation 15, a CSP can determine
the value of FV from the number of VM’s running on a host
and a performance overhead tolerable to CSP. For example, for
20 VMs with 1% expected system overhead of host machine,
a CSP can set the FV value from 30 to 60 seconds.

0 10 20 30 40 50 60
Validation Frequency (sec)

0

1

2

3

4

5

6

7

8

%
 O

ve
rh

ea
d

VM Count:1

VM Count:2

VM Count:4

VM Count:6

VM Count:8

VM Count:10

VM Count:20

Approximation for 20 VMs

Fig. 5: Identifying Frequency of Verification (FV)

Stability of the System: If the protocol fails frequently,
attackers may get sufficiently large window to attack on
the timestamp. To measure the stability of the Chronos, we
kept Chronos running in all of the 20 VMs for 7 days with
verification frequency 5 minutes. Among the 20 VMs, we
randomly selected 8 VMs to change their system time. We set
the system time of 4 VMs 5 minutes ahead of the original time
and 4 VMs 5 minutes past the original time. System time of
the host and the CS were set to the original time. We calculated
the true positive (TP) and true negative (TN) rate of each type
of attestations and certifications, and the success rate of the

completion of the verification cycles. We found that 94.67% of
the timestamp verification cycles were completed successfully.
The rate of TP was 100% for all types of attestations and
certifications and the rate of TN varied between 94.75% and
100%. Since, the system time of the host and the CS were set
to original, there were no true negative rate when the host and
the CS attest or certify each other. The experimental results
are presented in Table I.

Action % True Positive % True Negative
VM Attest Host 100 94.75
VM Attest CS 100 94.75
VM Certify Host 100 94.75
VM Certify CS 100 94.75
Host Attest VM 100 100
Host Attest CS 100 –
Host Certify VM 100 100
Host Certify CS 100 –
CS Attest VM 100 100
CS Attest Host 100 –
CS Certify VM 100 100
CS Certify Host 100 –

TABLE I: Results of system stability while running Chronos
for 7 days

VII. DISCUSSION

In this section, we examine several critical adversarial
scenarios and propose some possible alternative solutions to
avoid some of the adversarial cases.
Man in the Middle (MITM) Attack: In Chronos, all the
entities receive the current timestamp through a system call.
However, we investigate that using ptrace [34] system call,
a user with root privilege can trace the Chronos process and
change the return value of SYS time call by overriding the value
of registers. We argue that allowing ptrace to capture or change
the system call’s return value will make many of existing
security schemes vulnerable, such as SSH session hijacking
and arbitrary code injection attacks [35]. Since ptrace is not
commonly used by non-developers and non-admins, system
builders should be allowed to disable this system call by using
SELinux and Yama security modules [36], [37], [38].

MITM attack is also possible by modifying the memory by
changing /dev/mem. This is a complex attack that involves
finding where the user-level process is located and modifying
it on-the-fly. System calls can also be altered by compromising
the operating system’s (OS) kernel. Security of OS is orthogonal
to the focus of our work and it can be achieved by using a
Trusted Platform Module (TPM) [39], [40], [41].

Untrusted Chronos: We consider that the CSP or users cannot
modify the proposed timestamp verification protocol. However,
one can argue that a dishonest CSP can integrate a different
version of Chronos with the VM image, which does not detect
the incorrect timestamp of host machine or CS. Moreover,
Chronos running in the host machine or the CS can also be
altered. We propose that the cryptographic hash of the original
Chronos will be available on the Internet through a trusted
website. Users can compare the hash of Chronos that comes
with their VM image with the one that is available on the
website. On the other hand, Chronos running in host machines
and CSs can be attested by TPM to ensure that original

implementation of the protocol has not been compromised.

New Attack Surface: The communication channel between
VM and host can be considered as a new attack surface.
Exploiting this new communication channel, an adversary can
attack the hypervisor as the hypervisor runs in the host machine.
However, since we transfer messages through a secure channel
using message encryption and signature, it is not possible for
an intruder to come in the middle of the communication to
take control over the communication channel.

VIII. CONCLUSION AND FUTURE WORK

Alteration of the system time of a VM or host machine pro-
vides wrong information about the VM’s activity. Adversaries
can find this attack attractive to hide the trace of their malicious
activities or to provide a fake alibi. In this paper, we proposed
Chronos, a secure and trustworthy timestamp management
system to detect this kind of malicious behavior of cloud
users, where cloud service providers can also be dishonest.
We integrate a prototype of Chronos with an OpenStack-based
private cloud platform with minimal effort. The prototype
runs with a high degree of stability. Our experimental results
suggests that Chronos can be integrated with existing cloud
platforms with very low system overhead while providing a
high degree of trustworthiness of the timestamp of the host
and VMs. We believe, Chronos will ensure reliable forensics
investigation in clouds by providing trusted timestamps of VMs
and cloud hosts.

Future work will be focused on evaluating the performance
of Chronos on a larger scale cloud environment with multiple
hosts and CSs. We will enhance the protocol to handle multiple
time zones of the entities. At present, Chronos cannot ensure
trustworthy timestamps of a VM that is running inside another
VM. The first level VM participates in the protocol, but the
second level VM does not. Therefore, we plan to extend
Chronos to cope up with multi-level nested VM environments.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation under the CAREER Award CNS-1351038.

REFERENCES

[1] B. Deeter and K. Shen, “BVP Cloud Computing Index Crosses the $100
Billion Market Milestone,” http://goo.gl/mEuEi4, 2013.

[2] Gartner, “Gartner says that consumers will store more than a third of
their digital content in the cloud by 2016,” http://goo.gl/39a0y, 2012.

[3] IDC, “U.S. Public IT Cloud Services Revenue Projected to Reach $43.2
Billion in 2016,” http://goo.gl/nXL4t3, 2012.

[4] INPUT, “Evolution of the cloud: The future of cloud computing in
government,” http://goo.gl/KrKexK, 2009.

[5] Market Research Media, “Global cloud computing market forecast 2015-
2020,” http://www.marketresearchmedia.com/?p=839.

[6] Infosecurity-magazine, “Ddos-ers launch attacks from amazon ec2,” http:
//goo.gl/vrXrHE, July 2014.

[7] The Register, “Amazon cloud hosts nasty banking trojan,” http://goo.gl/
xGNkNO, 2011.

[8] Dist. Court, SD Texas, “Quantlab technologies ltd. v. godlevsky,” Civil
Action No. 4: 09-cv-4039, 2014.

[9] www.bbc.com, “Lostprophets’ Ian Watkins: ’Tech savvy’ web haul,”
http://goo.gl/C8FVnC, December 2013.

[10] S. Thorpe and I. Ray, “File timestamps for digital cloud investigations,”
Journal of Information Assurance & Security, vol. 6, no. 6, 2011.

[11] E. Casey, “Error, uncertainty, and loss in digital evidence,” International
Journal of Digital Evidence, vol. 1, no. 2, pp. 1–45, 2002.

[12] OpenStack, “Open source software for building private and public clouds.”
http://www.openstack.org/, 2012.

[13] P. Gladyshev and A. Patel, “Formalising event time bounding in digital
investigations,” International Journal of Digital Evidence, vol. 4, no. 2,
pp. 1–14, 2005.

[14] S. Thorpe and I. Ray, “Detecting temporal inconsistency in virtual
machine activity timelines.” JIAS, vol. 7, no. 1, 2012.

[15] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[16] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for secure
outsourcing of modular exponentiations,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 9, pp. 2386–2396, 2014.

[17] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in CCS. ACM, 2009, pp. 213–222.

[18] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix
inversion computation to a public cloud,” IEEE Transactions on Cloud
Computing, vol. 1, no. 1, pp. 1–1, 2013.

[19] K. Y. Oktay, M. Gomathisankaran, M. Kantarcioglu, S. Mehrotra, and
A. Singhal, “Towards data confidentiality and a vulnerability analysis
framework for cloud computing,” in Secure Cloud Computing. Springer,
2014, pp. 213–238.

[20] Z. Xu, C. Wang, K. Ren, L. Wang, and B. Zhang, “Proof-carrying cloud
computation: The case of convex optimization,” IEEE Transactions on
Information Forensics and Security, vol. 9, no. 11, pp. 1790–1803, 2014.

[21] S. Zawoad, A. K. Dutta, and R. Hasan, “SecLaaS: Secure logging-as-a-
service for cloud forensics,” in ASIACCS. ACM, 2013, pp. 219–230.

[22] S. Ganeriwal, S. Čapkun, C.-C. Han, and M. B. Srivastava, “Secure time
synchronization service for sensor networks,” in WiSec. ACM, 2005,
pp. 97–106.

[23] P. Maniatis and M. Baker, “Secure history preservation through timeline
entanglement,” in USENIX Security Symposium, 2002, pp. 297–312.

[24] S. Thorpe, I. Ray, I. Ray, and T. Grandison, “A formal temporal log data
model for the global synchronized virtual machine environment,” JIAS,
vol. 6, no. 2, 2011.

[25] B. Schatz, G. Mohay, and A. Clark, “A correlation method for establishing
provenance of timestamps in digital evidence,” Digital investigation,
vol. 3, pp. 98–107, 2006.

[26] M. W. Stevens, “Unification of relative time frames for digital forensics,”
Digital Investigation, vol. 1, no. 3, pp. 225–239, 2004.

[27] A. Boukerche and D. Turgut, “Secure time synchronization protocols
for wireless sensor networks,” Wireless Communications, IEEE, vol. 14,
no. 5, pp. 64–69, 2007.

[28] K. Sun, P. Ning, and C. Wang, “TinySeRSync: Secure and resilient time
synchronization in wireless sensor networks,” in CCS. ACM, 2006, pp.
264–277.

[29] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency and
reliability of digital time-stamping,” in Sequences II. Springer, 1993,
pp. 329–334.

[30] A. Bonnecaze, P. Liardet, A. Gabillon, and K. Blibech, “Secure
time-stamping schemes: A distributed point of view,” in Annales des
Télécommunications, vol. 61. Springer, 2006, pp. 662–681.

[31] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson, “Time-stamping with
binary linking schemes,” in CRYPTO. Springer, 1998, pp. 486–501.

[32] S. HABER, “How to time-stamp a digital document,” Journal of
Cryptology, vol. 3, no. 2, pp. 99–111, 1991.

[33] SysBench, “Sysbench: a system performance benchmark,” http://sysbench.
sourceforge.net/.

[34] linux.die.net, “ptrace(2) - Linux man page,” http://linux.die.net/man/2/
ptrace.

[35] www.kernel.org, “YAMA,” https://goo.gl/hsqi9E.
[36] K. Cook, “Security: Yama LSM,” http://lwn.net/Articles/393012/, 2010.
[37] J. Corbet, “SELinuxDenyPtrace and security by default,” http://lwn.net/

Articles/491440/, April 2012.
[38] Fedoraproject.org, “Features / SELinuxDenyPtrace,” http://goo.gl/

gwdFxA.
[39] F. Krautheim, D. Phatak, and A. Sherman, “Introducing the trusted

virtual environment module: a new mechanism for rooting trust in cloud
computing,” Trust and Trustworthy Computing, pp. 211–227, 2010.

[40] N. Santos, K. Gummadi, and R. Rodrigues, “Towards trusted cloud
computing,” in HotCloud. USENIX, 2009.

[41] Z. Shen and Q. Tong, “The security of cloud computing system enabled
by trusted computing technology,” in ICSPS, vol. 2. IEEE, 2010, pp.

V2–11.

