
ilable at ScienceDirect

Digital Investigation 14 (2015) S55eS67
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS 2015 USA
LINCS: Towards building a trustworthy litigation hold enabled
cloud storage system

Shams Zawoad*, Ragib Hasan, John Grimes
University of Alabama at Birmingham, USA
Keywords:
Litigation hold
Cloud security
Cloud forensics
Storage security
Regulatory compliance
* Corresponding author.
E-mail addresses: zawoad@uab.edu (S. Zawoad

Hasan), jwgrimes@uab.edu (J. Grimes).

http://dx.doi.org/10.1016/j.diin.2015.05.014
1742-2876/© 2015 The Authors. Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Litigation holds are inevitable parts of modern civil lawsuits that mandate an organization
to preserve all forms of documents related to a lawsuit. In current data storage models, this
includes documents stored in clouds. However, due to the fundamental natures of today's
clouds, incorporating a trustworthy litigation hold management system is very challenging.
To make the situation more complicated, defendants or plaintiffs may collude with the
cloud service provider (CSP) to manipulate the documents under the hold. Serious conse-
quences can follow if a litigant party fails to comply with the litigation hold for evidence
stored in the cloud, resulting in legal sanctions for spoliation. This will not only harm the
reputation of an organization but also levy of sanctions, such as fines, penalties, etc.
In this paper, we define a model of trustworthy litigation hold management for cloud-
based storage systems and identify the key security properties. Based on the model, we
propose a trustworthy LIitigation hold eNabled Cloud Storage (LINCS) system. We show
that LINCS can provide the required security properties in a strong adversarial scenario,
where a plaintiff or defendant colludes with a malicious CSP. Our prototype imple-
mentation reveals that the performance overhead of using LINCS is very low (average 1.4%
for the user), which suggests that such litigation hold enabled storage system can be in-
tegrated with real clouds.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Introduction

Litigation has become an unavoidable part of doing
business. Nearly 90% of US companies are engaged in some
sort of litigation (FULBRIGHT, 2005). A litigation hold is a
notice to an organization to preserve all the electronically
stored information (ESI) for a current lawsuit for a certain
time period. The court can charge litigant parties for evi-
dence spoliation, i.e., deliberate loss, modification, or
destruction of evidence during the litigation hold period, if
the proof of any such alteration is presented (FRCP, 2006b;
), ragib@uab.edu (R.

ier Ltd on behalf of DFRWS
Araiza, 2011). There are numerous cases, where a defen-
dant failed to adhere to the litigation hold and was sanc-
tioned for spoliation (FRD, 2003; Dist. Court, SD Ohio, 2014;
K&L Gates, 2012). Most often, the defendant has to pay the
court fees or fines as high as several hundred thousand
dollars (Dist. Court, SD Ohio, 2014; K&L Gates, 2012).

With the emergence of cloud computing, consumers are
moving towards the cloud for their storage needs. Ac-
cording to Gartner, consumers will store more than one
third of their digital content in the cloud by 2016 (Gartner,
2012). Because of the large scale migration to the cloud-
based storage and computation services, a massive
amount of evidence required for a lawsuit are now stored in
the cloud. Some incidents of storing contraband documents
in cloud-based storage systems have already been reported
(BBC, 2013; Dist. Court, SD Texas, 2014). Evidence residing
. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:zawoad@uab.edu
mailto:ragib@uab.edu
mailto:jwgrimes@uab.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.05.014&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.05.014
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.05.014
http://dx.doi.org/10.1016/j.diin.2015.05.014

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67S56
on clouds has great impact on legal rules and regulations,
especially for litigation holds (Araiza, 2011; Smith, 2012;
Dykstra and Riehl, 2012; Nicholson, 2012).

Unfortunately, traditional notions of data possession do
not always easily apply to the storage model of a cloud. In a
traditional computing model, a party usually has physical
possession of most of its ESI. But in clouds, the ESI is
generally under the physical control of the cloud service
provider (CSP). Litigants using cloud services risk spoliation
because of the CSP's physical control over their data (Pham,
2013). Moreover, a defendant can collude with the CSP to
remove evidencewithout keeping any trace of the evidence
destruction. A plaintiff can also collude with the CSP to
remove ESI from a defendant's cloud storage, in order to
falsely accuse the defendant for evidence spoliation. Failing
to preserve evidence not only prevents a party from
adequately proving or defending a claim at trial but can also
cost massive amount of money (K&L Gates, 2012). Recent
court cases include two incidents (Dist. Court, SD Ohio,
2014; Dist. Court, SD Texas, 2014), where the problem of
litigation hold in clouds has been addressed.

To address the problem of litigation hold management
in clouds, Schmidt proposed to build a legal hold frame-
work in clouds (Schmidt, 2012). However, the trustworthy
management of litigation holds was not addressed in this
work, especially when defendants and plaintiffs can
collude with the CSP. In the existing provable data
possession schemes in clouds (Ateniese et al., 2007; Erway
et al., 2009], users (in this case, the defendants) are
responsible to create the metadata and the data posses-
sions can be verified by users or a third-party. However, in
the problem domain of this work, the end user/the defen-
dant can be dishonest and does not want to preserve any
proof of data possession to hide an act of spoliation. A
dishonest defendant can simply avoid sending metadata to
a third-party so that any act of spoliation will be untrace-
able. Since a cloud can be accessible from anywhere, we
cannot force defendants to send verification metadata to
the auditor; they can always find a new device to upload
files to clouds without sending the metadata to the third
party. The existing secure logging schemes (Accorsi, 2006;
Holt, 2006; Zawoad et al., 2013) also do not consider the
threatmodel that we consider here, especially the collusion
between a dishonest CSP, defendants, and plaintiffs.

In this paper, we address the challenges of establishing
trustworthy litigation hold management systems in clouds
and propose LINCSe a litigation hold enabled cloud storage
framework. LINCS provides secure verifiable proof of the
preservation of a litigation hold during the holding period.
Unlike the existingwork on litigation holdsmanagement in
clouds (Schmidt, 2012), we do not consider the CSP as
honest. We consider that a defendant or a plaintiff can
collude with a malicious CSP. We propose two protocols to
upload and delete a file in a litigation hold enabled cloud
storage to preserve the proof of file creations and deletions
securely. We follow the forward-integrity approach (Holt,
2006) and publish the proofs periodically to ensure the
integrity of the proofs. Performance of the proposed system
is measured on an Amazon EC2 based cloud storage. We
develop a tool for auditors to determine any incident of
spoliation and identify any fake evidence using the proofs.
Implementing LINCS in real clouds can help to ensure
that all relevant documents are retained during the litiga-
tion hold period and can confirm any incident of spoliation.
Moreover, even if the CSP is honest, the security properties
ensured by LINCS can help CSPs to establish trust with the
cloud users. By ensuring trustworthy litigation hold man-
agement, LINCS can make clouds more compliant with
regulatory compliance, such as Sarbanes-Oxley (SOX)
(Congress of the United States, 2002), which requires
trustworthy data retention. Integrating the LINCS frame-
work can have advantage on the financial aspects of busi-
ness organizations. By avoiding a false accusation of
evidence spoliation, defendants can save significant
amount of money as well as their business reputation.
Cloud providers can also attract more customers with the
assurance of providing trustworthy litigation hold
management.

Contribution: The contributions of this work are as
follows:

1. To the best of the authors' knowledge, this is the first
work to address the trustworthy litigation hold man-
agement problem in the context of cloud computing. We
systematically analyze the threats on litigation hold
management in clouds and present a novel threat
model, which can provide future research directions in
this area.

2. We present a litigation hold enable cloud storage
framework e LINCS and show that it provides the
required security properties for a trustworthy manage-
ment of litigation holds in the cloud.

3. We evaluate the feasibility of the LINCS framework by
developing a prototype of the framework. Our results
suggest a very low performance overhead (average
1.4% for the user) for integrating the proposed
framework.

Organization: The rest of the paper is organized as
follows: Section 2 provides the background knowledge
about litigation holds. In Section 3, we present the liti-
gation hold model in clouds and the threat model. In
Section 4, we present the LINCS framework. Section 5
discusses the security analysis of LINCS. In Section 6,
we evaluate the performance of the proposed framework
and present a verification tool for auditors. Section 7
presents the related work and finally, we conclude in
Section 8.

Background

Litigation hold and spoliation

A litigation hold is a legal notice to a defendant that
triggers the preservation of ESI, which may require to
terminate the routine operation of an information system
to suspend the normal destruction of ESI (Araiza, 2011).
Litigation holds are also known as preservation letters or
stop destruction requests (Stacy, 2014). The preservation
obligation may arise from many sources, including com-
mon law, statutes, regulations, or a court order. FRCP Rule
37 implies that ordinary data retention and cleaning

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67 S57
policies should not be applied to ESI under a litigation hold
(FRCP, 2006b).

After a defendant is given notice of a litigation hold,
the destruction of information available from reasonably
accessible sources is considered to be spoliation (FRCP,
2006b). Hence, spoliation is the deliberate or inadver-
tent loss, modification, or destruction of evidence by a
party on notice of litigation (Araiza, 2011). It is the re-
sponsibility of the defendant to produce proof of preser-
vation of litigation hold. Similarly, if the plaintiff accuses
the defendant for spoliation, then the plaintiff has to
provide the evidence of spoliation. Two recent incidents of
spoliation have been observed in US Equal Employment
Opportunity Commission (EEOC) v. JP Morgan Chase and
EEOC v. Ventura Corp., where the defendants were sanc-
tioned for failing to preserve employment records that
were important evidence for their respective cases
(Zapproved, 2013).
Ts

Tc

Te

MH

L
TvSafe Deletion

Spoliation

User Storage User Storage

Fig. 1. Litigation hold model.
Litigation hold in clouds

A major difference for litigation holds on cloud-based
ESI for a public cloud environment is that a defendant's
data is now under the direct control of a third party e the
CSP (Rashbaum et al., 2014). FRCP 34(a)(1) states about the
preservation of evidence, which are under the control or
possession of the defendants (FRCP, 2006a). However, there
are various cases, where a third party was involved to store
ESI, but the court determined that the defendant was still in
possession or control of the ESI, since the defendant had or
should have had the ability to obtain the requested data
from the third-party (Dist. Court, ED Michigan, 2008; Dist.
Court, SD New York, 1999; Court of Appeals, 10th Circuit,
2011). Though the cloud-based ESI is under the posses-
sion of the CSP, relevant ESI within the possession or con-
trol of a third party may be obtained by serving a subpoena
upon the third party, including a CSP (InfoLawGroup LLP,
2010). Moreover, the CSP may be the subject of a civil
subpoena, government agency demand, or a governmental
subpoena directly (Rashbaum et al., 2014). Hence, if a case
involves evidence stored in clouds, customers and CSPs
share a mutual need and duty to ensure the litigation hold
on cloud evidence.

Case Study. The Quantlab Technologies Ltd. V. Godlevsky
case is an excellent recent example, where the court
imposed litigation hold on cloud evidence (Dist. Court, SD
Texas, 2014). In this case, plaintiffs brought suit against
defendants for copyright infringement, breach of contract,
misappropriation of trade secrets, and fraud. Quantlab
alleged that Kuharsky, a previous employee of Quantlab,
used their intellectual property including code for high
volume trade information management system. The
plaintiffs claimed that Kuharsky spoliated evidence from
different sources including cloud-based storage during the
lawsuit. Kuharsky said that he might have stored infor-
mation on the cloud, including the code. He said that one
account may have been on the Amazon Cloud and admitted
that the accounts expired years ago. It was not possible for
the court to establish either defendants’ or plaintiffs’ claims
of evidence destruction, as today's clouds do not ensure
litigation holds for cloud-based ESI nor provide proof of
spoliation.

In Brown v. Tellermate Holdings Ltd, the court also
addressed the need of appropriate measures to provide
proof of litigation hold in the cloud, without which a liti-
gation hold process might not be defensible (Dist. Court, SD
Ohio, 2014). In this case, the defendant failed to preserve
sales records of the plaintiff, which were stored in Sales-
force.com e one of the largest Software-as-a-Service (SaaS)
providers.
Modeling trustworthy litigation hold in clouds

Litigation hold model

We present the litigation hold model in Fig. 1. In this
model, DL is the timewhen the litigation hold is issued. Te is
the time, when the litigation hold will end. Hence, the
litigation hold remains active during (Te � Ts) period, which
we refer as DL. According to the definition of litigation hold,
during the DL period, the CSP or the defendant cannot
remove any files that are stored in the defendant's cloud
storage. Hence, as shown in Fig. 1, file deletion during DL is
considered as spoliation. Tc is the time, when the CSP col-
ludes with a defendant or a plaintiff and turns malicious.
Hence, (Tc � Ts) is the time period when the CSP was honest
during the litigation hold period, which is referred as DH,
where DH � 0. DM is the time period, when the CSP was
malicious, where DM ¼ (Te � Tc).

According to the definition of litigation hold, users are
free to remove any files before Ts and a defendant will not
be charged with spoliation for this action. Hence, file
deletion before Ts is not considered as spoliation, which is
presented as safe deletion in Fig. 1. A file modification
operation is treated as creating a new file. A defendant can
also add new files to the cloud storage during the DL period.
However, a defendant usually does not include a new
suspicious file in the storage when the storage is already
under a litigation hold. Hence, we do not consider such files
for litigation hold management.

If a plaintiff accuses a defendant for evidence spoliation,
the plaintiff needs to present adequate evidence to the
court that can prove the incident of file deletion by the
defendant during the DL period. On the other hand, when
accused with spoliation, the defendant needs to provide
the proof of file preservation during the DL period. Based

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67S58
upon the evidence provided by the litigant parties, the
court can verify the preservation of litigation hold at Tv,
where Tv can be any time between DL. A plaintiff can also be
a cloud user in a separate case and the defendant can be the
plaintiff for that case. In this scenario, the role of the
defendant and the plaintiff will be just the opposite. For the
new case, the plaintiff will be treated as the defendant and
the defendant will be treated as the plaintiff. Below we
describe the important terms of the system.

� Cloud Service Provider (CSP): The CSP in its entirety or an
employee of the CSP can bemalicious and colludewith a
defendant or a plaintiff. We assume that the CSP turns
malicious after the litigation hold is issued. The incen-
tive for being malicious can have monetary value.
Moreover, cloud providers may use another third party
for some services. Those third party providers can also
be malicious. Any bug in the CSP's storage system or
malware in the storage server can also cause unwanted
file deletions.

� Defendant: A defendant is a cloud user, whose cloud-
based storage is under litigation hold for an active
lawsuit and he/she can collude with the CSP.

� Plaintiff: A plaintiff brings a case against the defendant
and can collude with the CSP to falsely accuse a defen-
dant for evidence spoliation.

� Proof of File (PF): The PF preserves the proof of every file
of a user that resides in the user's cloud storage.

� Proof of Deletion (PD): The PD preserves the proof of any
file deletion.

� Auditor: An auditor is the court authority, who verifies
whether the litigation hold was maintained or not till Tv.
Threat model

We consider that the CSP can be dishonest and collude
with a defendant or a plaintiff. Assets in this problem are
files, which are under a litigation hold and need to be
protected from illegal destruction. We consider the
following attack scenarios to design the system.

Case 1. In this case, only the defendant is malicious and
following attacks are possible.

� After receiving a litigation hold, i.e., after Ts, a malicious
defendant can remove some incriminating files from the
cloud storage by avoiding the proof of deletion preser-
vation system. Later, the defendant can provide incom-
plete evidence (excluding the deleted files) to the
plaintiff.

� The defendant can deny the ownership of a file pre-
sented by the plaintiff at the trial or deny the deletion of
a file.
Case 2. In this case, the defendant colludes with the CSP
and following four attacks are possible.

� The defendant and the CSP together bypass the proof of
deletion preservation system. Hence, there will be no
traces of file deletions during the FCMU

i period.
� Besides avoiding the proof of deletion preservation
system, a colluding CSP can also remove the proof of file
(PF) and act as if the file was never created by the
defendant.

� Defendants can collude with the CSP to prove an act
of spoliation as a safe deletion operation, i.e., a
defendant removes a file after Ts but the malicious
CSP alters the proof of deletion and records the
deletion as it occurred before Ts. The CSP can also
change the system time of the file server and set the
time anytime before Ts to represent the deletion as a
safe deletion.

� The defendant and the malicious CSP can deny hosting a
file, which is presented to the court by the plaintiff.
Case 3. In this scenario, the defendant is honest but a
malicious plaintiff colludes with the CSP to frame the
defendant for spoliation. Following attacks are possible in
this case.

� The malicious CSP, colluding with a plaintiff can remove
a file from the defendant’s cloud storage without the
defendant's consent. Later, the plaintiff can present the
proof of deletion of the file to accuse an honest defen-
dant for evidence spoliation.

� A CSP colluding with a plaintiff can alter the proof of file
deletion to present a safe deletion operation by the
defendant as an act of spoliation.

� A plaintiff can also collude with a CSP to plant a back-
dated fake file to the defendant’s cloud storage
without the defendant’s consent. Later, the defendant
will not be able to produce that fake file to the court
since he/she was not aware of the file. This will give an
opportunity to the malicious plaintiff to wrongly accuse
the defendant for evidence spoliation.
Case 4. The proofs of files or the proofs of file deletions can
also be targets for external attackers. An attacker can learn
the content of a file from the proof of the file or the proof of
deletion.
Security properties

Considering the aforementioned attack scenarios, we
argue that a secure litigation hold management system
should ensure the following security properties.

I1 A defendant cannot deny the ownership of a file if it is
actually created by the defendant, which is referred
as nonrepudiation in the legal and records manage-
ment field of study.

I2 A defendant cannot deny a proof of file deletion if the
file is genuinely deleted by the defendant.

I3 If a file is removed before Ts, then the proof of this
deletion cannot be reordered by any adversary to
place it after Ts.

I4 If a file is deleted after Ts, the proof of this deletion
cannot be reordered by any adversary to place it
before Ts.

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67 S59
I5 If a malicious defendant whether acting alone or
colluding with a CSP removes a file during DL and the
plaintiff presents a copy of that file to the court, then
the auditor must be able to detect the incident of
spoliation.

I6 A malicious plaintiff, colluding with a CSP cannot
delete a file from a defendant's cloud storage and
prove the deletion as an act of spoliation to the
auditor.

I7 A malicious CSP, colluding with a plaintiff cannot add
a fake backdated file in a defendant's storage without
being detected by the auditor.

C1 External attackers including malicious insiders of the
CSP cannot learn the content of a file from the proofs of
files or the proofs of deletions.

Challenges

After a litigation hold is issued, an honest CSP can
track all the document removal requests during the DL
period and store the requested documents in a separate
storage. This will ensure the preservation of all ESI along
with the attempted spoliation. However, a CSP as a whole
or a malicious employee of the CSP can collude with any
of the party of a litigation and can produce incomplete
evidence.

A CSP could prove their honesty by providing the stor-
age device to investigators. The investigator can probe the
device's unallocated slack space to reveal the deleted files
and from the timestamp of the deleted files, spoliation can
be identified easily. However, there are two fundamental
problems with this traditional approach. First, because of
the multi-tenant nature of clouds, CSPs cannot provide the
storage device to investigators without violating the pri-
vacy of honest co-tenants. Second, cloud infrastructures are
not centralized, ESI for one customer can be located at
dispersed location, and it will be impossible to give access
to the storage of all the data centers to investigators.

A CSP can also export all the documents that need to be
on hold to a trusted third party (TTP). However, this scheme
will also violate users' privacy. For example, if the third
party gets access to trade secret information, which was
stored in a cloud that could destroy the legal protection of
trade secrets. Moreover, this type of TTP needs to accom-
modate massive amount of storage facility, in the worst
case similar to CSPs, which may prove impractical and cost
inefficient overtime.

When a litigation hold is issued, a defendant and
plaintiff can copy all the data in a read-only medium to
prevent spoliation and protect the integrity of the evidence.
However, this scheme also raises some challenges. For
example, it can be challenging tomake sure that all the data
get copied. The defendant can hide some files or the
plaintiff can add fake files. Moreover, there are challenges
of managing such a read-only storage. If a third party
manages this storage, there will be the same issues that are
addressed for the TTP-based scheme previously.

A defendant can also digitally sign all files at the time Ts,
so that no deletion by anyone can occur without invalid-
ating the signature. However, a malicious defendant may
not sign some crucial documents and can remove those
documents during the DL period without keeping any trace
of spoliation. Having multiple backups of the storage can
also help to determine an act of spoliation. Unfortunately, a
malicious defendant can try to avoid using multiple
backups to easily destroy the evidence. However, the
redundancy can be useful for honest defendants and can
help in case of a false accusation of spoliation.

Reliability of a litigation holdmanagement system could
be ensured by placing a trusted surveillance system in the
defendant's devices to monitor communications between
the devices and a cloud-based storage system. Unfortu-
nately, since a cloud-based storage can be accessible from
any device, the defendant can always find a new device in
which the surveillance system is not running. Hence, such a
surveillance mechanism is an incomplete solution, which
can provide a dishonest defendant an opportunity of
removing a file from the cloud storage without leaving any
trace behind.

The LINCS framework

Overview

We propose that in a litigation hold enabled cloud
storage system, a user will generate a File Creation
Metadata FCMU for each file and send the file along with
the FCMU to the CSP. Whenever the Litigation Hold
Manager (LHM) module of the cloud storage receives a
file, it generates its own file creation metadata FCMC . The
LHM creates forward-secured Proof of File PF from the
FCMU and the FCMC and attaches it with the file as a
metadata. Likewise, for each file deletion operation, the
user and CSP generate File Deletion Request FDR and File
Deletion Acknowledgment FDA respectively. These met-
adata are encapsulated as Proof of Deletions PD. After
some certain epoch, the PF and PD will be published to
the Internet to make these forward-secured, i.e., if the
system get compromised at time t, no entity can
manipulate the metadata and the proofs published before
time t.

Notation and Assumptions:HðMÞ is a collision resis-
tant and one-way hash function, which produces a hash of
a message M (Penard and Werkhoven, 2008). The SigSK ðMÞ
function generates a signature of a message M using the
secret key SK (Bellare and Rogaway, 1996). MacKðMÞ is the
MAC (message authentication code) generation function to
produce a MAC of a message M using the key K. MKeyðSÞ is
the function to produce a secret key for MAC generation
from a given secret S. For concatenation of two or more
attributes, we use the symbol ‘j’. A tuple is encapsulated in
‘< > ’. We assume that the defendant and the CSP have
setup their secret keys and public keys and distributed the
public keys. The secret key and the public key of the user
are SKU and PKU and for the CSP, these are SKC and PKC . We
discuss the construction of the proposed framework
below.

File upload in LINCS

The workflow for uploading a new file in LINCS is
depicted in Fig. 2 and we discuss the details below.

:User

GenFCMC

GenFCMU

PrepPFChain

Response

File + FCMU
i

FCMC
i

Store

File + PFi

:LHM

Fig. 2. File upload workflow.

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67S60
� A user first executes the GenFCMUðSKU;CTU; FiÞ/
fFCMU

ig algorithm to produce the file creationmetadata
FCMU

i for the Fi file. To prepare the FCMU
i, the algorithm

requires the secret key of user SKU, current timestamp of
the user CTU, and the Fi file that the user will send to
clouds. The file creation metadata FCMU

i is constructed
as follows:

FCMU
i ¼ <

�
H
�
Fi
����FIDi

���CTU
�
; SigSKU

�
H
�
Fi
����FIDi

���CTU
�
> (1)
Here, FID
i is an alphanumeric unique identity of a file,

which is generated by the algorithm. The user then attaches
the FCMU

i with the file Fi as a user-defined file creation
metadata and sends the file to the CSP.

� After receiving a file from the user, the LHM
module of the cloud storage system will run
GenFCMCðSKC;CTC; Fi; FIDiÞ/fFCMC

ig algorithm to pro-
duce the file creation metadata FCMC

i for the Fi file. As
arguments, the algorithm takes the secret key SKC, cur-
rent timestamp of the cloud storage server CTC, the Fi

file, and its identity FID
i. The algorithm constructs the file

creation metadata FCMC
i as follows:

FCMC
i ¼ <

�
H
�
Fi
����FIDi

���CTC
�
; SigSKC

�
H
�
Fi
����FIDi

���CTC
�
> (2)
� In this step, the LHMmodule preserves the proof offile PF
in a forward secureway using the algorithmPrepPFChain
ðFCMU

i; FCMC
i;MKC

i�1Þ/fPFi;MKC
ig. The algorithm re-

quires the FCMU
i and FCMC

i of the ith file, and the key to
generate the PF for the (i�1)th fileMKC

i�1. The algorithm
outputs PFi as the proof of creation of the ith file.

The key to produce the MAC for the ith file MKC
i is

generated as follows:

MKC
i ¼ <MKey

�
H
�
MKC

i�1
��

> ;where MKC
0

¼ <MKeyðHðSCÞÞ> (3)
The SC is stored in a secure server. After creating the new
MAC generation key MKC

i, the LHM module removes the
previous MAC generation key MKC

i. The algorithm then
produces the PFi as follows:

PFi ¼ <MacMKC
i

�
CSi

�
;
�
CSi

�
> (4)

where CSi ¼ < FCMU
i
���FCMC

i > .
One can argue that PFi can be included in the chain to

prevent alteration of the file creation history. The chain is
created using only the MAC key intentionally so that no
entity can re-compute the chain without having the initial
secret key. Including PFi will increase the storage overhead
but will not give extra security. Since the PFs are included as
a metadata of the files, defendant will have the ability to
verify that they share their belief of the file history with the
CSP. Moreover, the VerifyPFChain algorithm, described in the
Section 4.4 can identify any modification of the chain of PF.

� The LHM module attaches the PFi with the Fi file as a
metadata and stores the file in the cloud storage system.
Additionally, the last PF of each day will be published to
the Internet. The proofs can be available by RSS feeds to
protect it frommanipulation by the CSP after publishing.
Users can subscribe to such RSS feeds to keep a copy of
the proofs. The proofs can also be published in every
hour or every minute depending on the required secu-
rity level of the defendant's storage system. The task of
proof publication can be encapsulated as a Cron job.
Specific time and frequency of publishing PF can be
controlled by the Cron job parameters.

File deletion in LINCS

File deletion in LINCS follows a special protocol (pre-
sented in Fig. 3) to preserve secure proof of file deletion.
Details of this protocol are presented below.

� When a user wants to delete a file Fi from clouds, first
the user runs GenFDRðsSKU;DTU; Fi; FIDiÞ/fFDRig algo-
rithm to create the file deletion request FDRi for the Fi

file. To generate the FDRi, the algorithm requires the
secret key SKU, current system time of userDTU, the file Fi

that the user wants to delete, and its identity FID
i. The

file deletion request FDRi is constructed as follows by the
algorithm:

FDRi ¼ <
�
H
�
Fi
����FIDi

���DTU
�
; SigSKU

�
H
�
Fi
����FIDi

���DTU
�
> (5)
The user then sends the FDRi to the cloud as the file
deletion request of the Fi file.

� After receiving a file deletion request from a user, the
LHM module executes GenFDAðSKC;PKU;DTC; Fi; FIDiÞ/
fFDAig algorithm to verify the file deletion request FDRi

for the Fi file and creates acknowledgement of the
deletion request FDAi. Arguments of this algorithm are
the secret key of CSP SKC, public key of the user PKU,
current timestamp of storage serverDTC, the file Fi that is
requested by the user for deletion, and its identity FID

i.

+ :User

GenFDA

GenFDR

PrepPDChain

Response

FDRi

PDi

:LHM

FDAi

GenAR
AR

Store

Fig. 3. File deletion workflow.

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67 S61
The LHM module first verifies the signature of the user,
which is included in the FDRi using the pubic key of the user
PKU. If the signature is valid, the LHMmodule generates the
file deletion acknowledgement FDAi as follows:

FDAi ¼ <
�
H
�
Fi
����FIDi

���DTC
�
; SigSKC

�
H
�
Fi
����FIDi

���DTC
�
> (6)

This acknowledgement message is then sent to the user.

� After receiving the FDAi from the CSP, the user generates
acknowledgement receipt AR using GenARðFIDi; SKU;
PKC; FDA

iÞ/fARg algorithm. The algorithm requires the
private key of the user SKU, public key of the CSP PKC,
FDAi, and the identity of the ith file FID

i to generate the
AR. The algorithm first verifies the signature of the CSP
in the FDAi using the public key of the CSP PKC. If the
signature is valid, it will check the file hash of FDAi with
the file hash of FDRi, and prepares the AR for the Fi file as
follows,

AR ¼ 〈
�
Response

���FIDi
���ATU

�
; SigSKC

�
Response

���FIDi
���ATU

�
〉 (7)
Here ATU is the timestamp of the AR message creation and
Response can be true or false based on the signature and file-
hash verification results. The user finally sends the AR to
the CSP.

� Upon receiving AR from the user for the Fi file, the LHM
module removes the Fi file and stores the proof of
deletion securely using algorithm PrepPDChain ðFDRi;

FDAi; MKD
i�1Þ/fPDi; MKD

ig. Inputs of this algorithm
are FDRi and FDAi of the Fi file deletion operation, and
the key to generate the PD for the (i�1)th file MKD

i�1.
The algorithm outputs PDi as the proof of deletion of the
Fi file.
The key to produce the MAC for the ith file deletionMKD
i

is generated as follows:

MKD
i ¼ 〈MKey

�
H
�
MKD

i�1
��

〉;MKD
0 ¼ 〈MKeyðHðSDÞÞ〉 (8)

The SD is stored in a secure server. After creating the new
MAC generation key, the LHM module deletes the previous
MAC generation key MKD

i�1 and produces PDi as follows:

PDi ¼ 〈MacMKD
i

�
DSi

�
; ðDSÞ〉 (9)

where, DSi ¼ < FDRi
��FDAi

��AR>
The LHM module stores the PDi in the proof of deletion

database and returns the file deletion result to the user.
After some certain epoch, the last PD will be published to
the Internet.

Verification of litigation hold

From the proof of file and proof of deletion chain, an
auditor can determine any incident of spoliation. There are
two verification processes. The auditor checks the proof of
deletion PD chain todetermine anymodification in the chain.
The auditor also needs to check the validity of the chain of PF
for a given set of files. The auditor determines any alleged
incident of spoliation using these verification processes. We
describe each of the verification algorithms below.

� VerifyPDChain([PD0, … PDv], PKU, PKC, SD) / {accept,
reject} algorithm can detect any alteration of the PD
chain. Inputs of this algorithm are: proof of deletion
from the beginning to the verification time Tv, public
keys of the user and the CSP, and the secret SD. The al-
gorithm either accepts or rejects the chain of PD. This
verification algorithm is depicted in Fig. 4 and it works
as follows.

For every PDi, i¼ 0 to v, the algorithm first calculates the
key for MAC generation using the Equation (8). Using the
pubic key of the user and the CSP, it then verifies the
signature of the components of the DSi. If the signatures are
valid, the algorithm generates MAC of DSi using the previ-
ously created MAC key MKD

i. When the generated MAC-
A(DSi) is equal to the MAC(DSi) of the chain, the algorithm
accepts PDi as in the correct order. If the PDi is the last proof
of the day t, the algorithm compares the PDi with published
PD of the day t PDt

p. The algorithm rejects the chain if these
two are not equal.

� VerifyPFChain([F0,… Fv], PKU, PKC, SC) / {accept, reject}
verifies the chain of PF for a set of files ½F0::Fv�. Besides
the set of files, this algorithm takes the public keys of the
user and the CSP, and the secret SC as arguments.

First, the set of files will be sorted in ascending order of
the file creation time. After sorting the files, the verification
algorithm works similar to the VerifyPDChain algorithm.

For every file Fi, where i ¼ 0 to v, the algorithm calcu-
lates the key for MAC generation using the Equation (3).
After extracting the PFi from the header of the Fi file, the

Fig. 4. Verification of the proof of deletion chain.

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67S62
algorithm first compares the hash of the Fi file with the
HðFiÞ component of the PFi. Later, the algorithm verifies the
signature of the components of the PFi. If the signatures are
valid, the algorithm generates MAC of CSi using the previ-
ously created MAC key MKC

i. If the generated MACAðCSiÞ is
equal to the MACðCSiÞ of the Fi file, the algorithm accepts
the file Fi as in the correct order, otherwise it rejects the file.
If the file Fi is the last file of the day t, then the algorithm
compares PFi with the published PF of the day t PFt

p. The
algorithm rejects the list of files if these two are not equal.

Security analysis

In this section, we discuss how LINCS provides the se-
curity properties mentioned in Section 3.3. The following
lemmas are based on the assumption of the existence of a
collision-resistant hash function, secure encryption, and
MAC generation function.

Lemma 1. PFi is the proof provided by the user and the CSP
about the existence of the Fi file.

Lemma 2. FCMU
i is the proof provided by the user and the

CSP about the deletion of the Fi file.

Lemma 3. The secret keys and the initial secrets SD and SC
cannot be accessed by an adversary afterwards, but can be
accessed by the auditor.

Lemma 4. Once a proof of file PF and a proof of deletion PD
are published, the CSP cannot alter the proofs or deny the
existence of the proofs.
Security propositions and proofs

Proposition 1. If a file Fi is actually created by a defendant,
then the defendant cannot deny the possession of the Fi file.
Proof. According to the proposed file upload protocol,
each file created by the user/defendant contains the proof
of file PF with the file-header. Hence, for the Fi file, there
will be a PFi attached as a metadata of the file, which in-
cludes the FCMU

i. There is a signature of the defendant with
the FCMU

i and according to Lemma 3, no adversary has
access to the secret key of the defendant. Hence, a defen-
dant cannot deny the file Fi, when the file-header contains
the defendant-signed FCMU

i. Hence, the proposition 1 is
true, which ensures the security property I1.

Proposition 2. If a file Fi is deleted by a defendant by
following the proposed file deletion protocol, then the
defendant cannot deny the proof of deletion PDi for the Fi

file.
Proof. The proposed file deletion protocol ensures

mutual agreement between the defendant and the CSP to
delete a file. The proof of deletion PDi for the Fi file contains
two components that are signed by the user: file deletion
request FDRi and acknowledgement receipt AR. The FDRi

ensures that the file deletion actually initiated by the
defendant and the AR proves that the CSP and the defen-
dant agreed upon the file deletion. Since the defendant
signed these two components and according to Lemma 3,
no adversary has access to the secret key of the defendant,
the defendant cannot deny the proof of file deletion PDi.
Therefore, proposition 2 is true, which ensures the security
property I2.

Proposition 3. If a file Fd is removed before Ts, then the
proof of deletion of this file PDd cannot be placed after Ts in
the proof of deletion chain without being detected by an
auditor.

Proof. Suppose the file Fd was actually removed before Ts
and Fdþ1 is the file that was removed after the file Fd and
Fd�1 is the file that was removed before the file Fd. If an

PD0 PD(d-1) PDd PD(Ts +1) PDvPD(d+1)

Ts

Fig. 5. An attempt of presenting a fake spoliation by placing PDd after Ts

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67 S63
adversary removes the proof of deletion PDd of the file Fd

from its actual position and puts it after Ts (as illustrated in
Fig. 5), then PDdþ1 will be appeared after PDd�1 in the
altered proof of chain. According to the VerifyPDChain al-
gorithm, for i ¼ 0 to i ¼ (d � 1), the auditor generated
MACAðDSiÞ and the CSP providedMACðDSiÞwill be equal. At
i ¼ d, the auditor creates MACAðDSdþ1Þ from the MAC key
MKD

d. The newly generated MACAðDSdþ1Þ will not match
with MACðDSdþ1Þ because the MACðDSdþ1Þ was created
using MKD

dþ1.
According to Lemma 3, an adversary cannot access the

initial secret SD later and hence, cannot recreate the chain.
However, an honest but curious CSP may store the MAC
generation keys. Later, the CSP may turn malicious and can
use the storedMKDs to alter the chain. Suppose, the file Fd is
removed on day t and the CSP modified the chain starting
from that day. In that case, the last proof of day t will not be
similar to the published last proof of that day. This incon-
sistency will also be found for each day after the day t.
According to Lemma 4, the CSP cannot modify or deny the
published proof. Therefore, any modification in the chain of
PDwill be detected by an auditor. Therefore proposition 3 is
true, which ensures the security property I3.

Proposition 4. If a file Fd is removed after Ts, then the proof
of deletion of the file PDd cannot be placed before Ts in the
proof of deletion chain without being detected by an
auditor.

Proof. Suppose an adversary wants to place the PDd be-
tween PDj and PDj þ 1 as presented in Fig. 6. The proof of
deletion chain verification algorithm VerifyPDChain creates
MACAðDSjþ1Þ using the keyMKD

jþ1. However, the generated
MACAðDSjþ1Þ will not match with the MACðDSdÞ of the PDd,
since the MACðDSdÞ was not calculated using the key
MKD

jþ1 at the time of deleting the file Fd. Since the CSP
cannot modify or deny any published proof (Lemma 4),
they cannot recreate the chain starting from (jþ 1) without
being detected by the auditor. Therefore, PDd cannot be
placed after PDj without being detected by the auditor.
Hence, proposition 4 is true, which ensures the security
property I4.

An honest but curious CSP can store theMAC generation
keys and latermay turnmalicious. Such amalicious CSP can
try to place PDj before Ts and recompute the chain since the
last publication. However, continuously publishing proofs,
PD0 PDj PDdPD(Ts +1) PDvPD(j+1)

Ts

PDd

Fig. 6. An attempt of hiding spoliation by placing PDd before Ts
such as via RSS feeds will narrow down the window of
opportunity for manipulating the chain to zero file
operations.

Proposition 5. If a defendant removes a file Fd during the
DL period and the plaintiff presents the file Fd to the court,
the auditor must be able to detect the act of spoliation.

Proof. When the CSP is honest, the deletion of the file Fd

must follow the proposed protocol. Hence, when the
defendant removed the file Fd, according to Lemma 2, there
must be a proof of deletion PDd and since proposition 2 is
true, the defendant cannot deny the PDd. If the deletion of
the Fd file is an act of spoliation, the PDd will appear after Ts.
This can be identified using the VerifyPDChain algorithm.

A defendant can collude with a malicious CSP and can
remove a file without following the proposed protocol.
Hence, there will be no proof of deletion PDd for the Fd file.
However, according to Lemma 1, the PFd can prove the
existence of the file Fd in the defendant’s cloud storage.
Using the VerifyPFChain algorithm, the auditor can check
whether the PFd, attached with the file Fd is valid or not.
After including the Fd file with the defendant-provided set
of files, the VerifyPFChain algorithm will accept the whole
set of files if the file Fd is valid.

The defendant can also collude with the CSP to remove
the PFd from the Fd file, before the file is acquired by the
plaintiff. However, the VerifyPFChain algorithm can detect
this removal. Suppose Fd þ 1 is the file that was created after
the Fd file. Since the file Fd is not provided to the auditor by
the defendant, when i ¼ d, the VerifyPFChain algorithm
generates MACAðCSdþ1Þ using the key MKC

d. The algorithm
then compares theMACAðCSdþ1Þwith theMACðCSdþ1Þ of the
Fd þ 1

file, which are not equal because theMACðCSdþ1Þwas
created using theMKC

dþ1 key. Even if an honest but curious
CSP stores the MAC generation keys, the malicious CSP
cannot modify the chain starting from Fd þ 1 without being
detected by the auditor since the last proof of each day is
already published. Therefore, the proposition 5 is true,
which ensures the security property I5.

Proposition 6. If a file Fd is removed without the de-
fendant's consent, the plaintiff cannot prove this deletion
as an act of spoliation.

Proof. All the file deletions in LINCS storage should
follow the proposed protocol when the CSP is honest.
However, a malicious CSP can collude with a dishonest
plaintiff and remove the Fd file by avoiding the proposed
protocol. The plaintiff still needs to present the proof of
deletion PDd to the court, which should contain the de-
fendant’s signature with the FDRd and the AR. According to
Lemma 3, no adversary can access the secret key of the
defendant to spoof the signature. Hence, if the malicious
CSP adds a fake PDd, the auditor can detect the invalid
signature of the defendant in the VerifyPDChain algorithm
and will reject the proof. Hence, the proposition 6 is true,
which ensures the security property I6.

Proposition 7. A malicious CSP cannot add a fake file Ff to
the defendant's storage without being detected by the
auditor.

Proof. The file Ff should have the proof of file PFf in the
file header. The PFf includes FCMU

f , which is signed by the

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67S64
defendant. According to Lemma 3, the secret key of the
defendant cannot be accessed by an adversary. Hence, if the
CSP add a fake FCMU

f with the PFf, the VerifyPFChain al-
gorithm can detect this anomaly while verifying the
signature. Moreover, presenting the Ff file as a backdated
file requires modification in the chain of PF. Any modifica-
tion in the chain can be detected by the auditor using the
VerifyPFChain algorithm. Therefore, the file upload proto-
col ensures that a malicious CSP colluding with a plaintiff
cannot add the fake Ff file in the defendant’s storage
without being detected by the auditor. Hence, the propo-
sition 7 is true, which ensure the security property I7.

Proposition 8. An adversary cannot identify the content of
the file Fi from the PFi or PDi.

Proof. The proof of file PFi and the proof of deletion PDi

are created from the hash of the Fi file. Because of the one-
way, collusion resistant hash function, it is not possible for
an adversary to reverse engineer the proofs and extract the
content of the Fi file. Therefore, the proposition 8 is true,
which ensures the C1 property.
Implementation and evaluation

Incorporating LINCS can introduce overhead for users as
well as the CSP. In this section, we first analyze the over-
head from users' and CSP's perspective. Later, we present
the performance analysis of PrepPFChain and PrepPDChain
algorithms. Finally, we present the litigation hold verifica-
tion tool and performance analysis of the VerifyPFChain
algorithm.

System Configuration. As a prototype of cloud-based
storage, we set up a ftp server in an AmazonEC2 medium
(m1.medium) instance running the Ubuntu 12.04.4 LTS
operating system. The litigation holds manager (LHM)
module was running inside the EC2 instance. However, in a
real-life implementation, the LHM module will not be
deployed in an EC2 instance; it will be a part of the storage
management module of the cloud infrastructure. Perfor-
mance of user and auditor modules are tested on a Dell
laptop running Debian 3.2.46-1 on Intel Core 2 Duo CPU
(2.66 GHz) with 4 GB of RAM and the hard disk drive's
Fig. 7. Performan
capacity was 500 GB. We used Oracle JDK (version 1.7.0_51)
to implement the modules of LINCSṪhe LHM module uses
the PostgreSQL 9.1.13 database system to store the proofs of
deletion. Java Crypto and Apache Commons library were
used for key generation, encryption, decryption, hash, and
MAC generation. We used RSA (2048 bit) for encryption,
SHA-256 hash function for hashing, and HMACSHA1 for
MAC generation.

Overhead for uploading files. To measure the overhead
of uploading files using our proposed scheme, we first
upload 1000 files to the AmazonEC2-based cloud storage
andmeasure the time to upload. The file sizewas uniformly
distributed between 50 KB and 50,000 KB. Later, for each of
the files, we generate the file creation metadata FCMU ,
attach the FCMU with the file, upload the file to cloud
storage again, and measure the time of this whole process.
Fig. 7a illustrates the experimental result. The overhead of
uploading files varies between 0.6 and 3.4%, and the
average overhead is 1.4%. From Fig. 7a, we observe that
there is a spike between the 10 MBe20 MB range.
Analyzing the upload time and FCMU creation time sepa-
rately indicates that the spike was due to the network
bandwidth; it is not related with the FCMU creation.

Storage overhead for the CSP: After integrating the
LHM module, the CSP needs to store some extra informa-
tion because of the metadata and can also experience lower
performance due to the additional work. Using the afore-
mentioned cryptographic properties in Java, we measured
that each FCMU and FCMC takes 434 bytes, where the cur-
rent time information requires 13 bytes, hash of file is 64
bytes, signature is 344 bytes, an alphanumeric ID of 10
bytes as the FID, and three information separator of 1 byte
each. Size of MAC is 28 bytes. Hence, for one file, we need
896 bytes (434 * 2þ 28) of additional information. For a file
of size [2, 4, 8, 16, 32] MB, the associated overhead is
[0.0445, 0.022, 0.011, 0.006, 0.002]%.

Performance analysis of proof creation. We measured
the performance of two algorithm PrepPFChain and Pre-
pPDChain, which is illustrated in Fig. 7b. For each of the file
uploaded by a defendant, we measured the performance
analysis of these two algorithms. We used the same set
files, which we used to measure the overhead of file
ce analysis.

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67 S65
uploading. Fig. 7b depicts that the required time increases
linearly with number of files. With the uniformly distrib-
uted 1000 files, we measured that the average time to
complete PrepPFChain algorithm for each file is 1.5 ms and
for PrepPDChain, it is 0.3 ms.

Litigation hold verification tool

We developed a verification tool for auditors to deter-
mine spoliation and fake evidence provided by a litigant
party. The main control panel of this tool is presented in
Fig. 8. The auditor can input the files received from the
litigant parties, in zip format, proof of deletion (collected
from the CSP) in csv format, and the litigation hold period.
Defendants retrieve the files from their cloud storage.
Plaintiffs can collect the files from the CSP, defendants, or a
insider of the defendant. Some of the files, provided by the
plaintiff may fall into the safe deletion category, whether
others may fall into spoliation. Some of the files may not be
even created/deleted by the defendant. The verification
result panel shows these three sets of files including the
reason for spoliation or rejection. An auditor can view the
details of every item of these three categories, which in-
cludes information about the file owner, creation or dele-
tion time, metadata, signature, and chronological order
verification results.

Performance analysis of proof verification. We
measured the performance of the file verification proce-
dure (VerifyPFChain algorithm) for two criteria: total
number of files and total size of files. In the first experi-
ment, we verified different number of files starting from
100 to 1000 with 100 intervals, where the total size of the
files was always 5 GB. Results of this experiment are pre-
sented in Fig. 9a, from where we notice that verification
time increases linearly with the number of files. An auditor
Fig. 8. Verification to
can verify 1000 files of total 5 GB size in approximately
2.5 min Fig. 9b illustrates the results of our second exper-
iment, where there were 100 files in each run and total size
of those 100 files were 2, 4, 8, 16, 32, and 64 GB. The results
indicate that the verification time increases linearly with
the file size.

Related work

Researchers of law enforcement area have addressed
the problem of maintaining litigation holds in the cloud
(Araiza, 2011; Nicholson, 2012; Katz, 2009). Araiza et al.
suggested to automatically isolate specified ESI and asso-
ciated metadata when there is a litigation hold (Araiza,
2011). Researchers suggested that the service level agree-
ment (SLA) should ensure the deactivation of routine
destruction of ESI once a litigation hold is triggered (Smith,
2012; Pham, 2013).

Hasan et al. formalized the litigation hold model for
database transaction and proposed a framework for trust-
worthy vacuuming that ensures retention of data in ques-
tion (Hasan and Winslett, 2010). Mitra et al. proposed
efficient schemes for secure management of inverted index
entries for a write-once read-many (WORM) compliance
storage device to support litigation hold (Mitra et al.,
2008a, b). Borisov et al. proposed an encrypted index to
allow litigation hold for expired document in WORM stor-
age and restricted queries on the keyword index (Borisov
and Mitra, 2008). However, the threat model that we pro-
posed here is novel. These schemes did not address the
problem of trustworthy litigation management for cloud-
based storage.

Ateniese et al. first defined the provable data possession
(PDP) model for ensuring possession of static files on an
untrusted storage (Ateniese et al., 2007). They utilized RSA-
ol for auditor.

Fig. 9. Performance analysis of verification procedure.

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67S66
based homomorphic tags for auditing outsourced data and
provide public verifiability. Later, they extended the
scheme to support dynamic data (Ateniese et al., 2008).
Erway et al. extend the PDP model to support provable
updates to stored files using rank-based authenticated skip
lists (Erway et al., 2009). If a dishonest CSP removes a file
without the client's consent, the client can detect this
malicious behavior using a PDP scheme. However, these
schemes require the client to generate the metadata as the
PDP. Therefore, these schemes cannot solve the specific
problem that we address in this paper, especially when a
client is dishonest and does not want to preserve any PDP.

The closest work related to managing litigation hold in
clouds was proposed (Schmidt, 2012), where the author
proposed to build a legal hold framework in clouds. The
framework receives legal hold information indicating a
legal hold applicable to modification or deletion of a
document. After receiving the legal-hold information, the
framework updates a legal-hold index with an identifier for
the document and updates legal-hold metadata with the
identity of the legal action. However, this patent did not
focus on trustworthy management of litigation hold to
protect hold from dishonest CSP, defendant, or plaintiff.

Conclusion and future work

In recent years, spoliation of ESI has assumed critical
importance in civil litigation, which warrants very careful
attention to technical solutions to the problem. Proving
whether spoliation has been occurred for cloud-based ev-
idence is very challenging due to the fundamental natures
of clouds. Collusion between different parties makes the
problem more complicated. In this paper, we analyzed the
legal rules for litigation holds and based on that, defined a
model of trustworthy litigation hold in clouds. Using this
model, we proposed LINCS that ensures the required se-
curity properties of a trustworthy litigation hold enabled
cloud storage. Our prototype implementation suggests that
such scheme can be implemented with low system
overhead.

This paper is the first step towards a systematic analysis
of the litigation hold problem in the cloud and provides a
secure and efficient solution. We did not consider the file
deletion before Ts, dynamic behavior of the cloud storage,
and new files creation after Tswhile designing the proposed
solution. Moreover, trustworthy management of metadata
needs to be handled to ensure the security of the special
types of files, such as emails, which are usually stored in
files using standard email formats, such as MBOX or EML.
We will address these issues in the future and also inves-
tigate the case of merging LINCSwith existing PDP schemes.
We plan to integrate the LHM module with the object
storage and block storage modules of OpenStack e an open
source cloud platform.

Acknowledgment

We would like to thank the anonymous reviewers and
the shepherd for their valuable comments to improve the
paper. This research was supported by the National Science
Foundation CAREER Award #CNS-1351038, the Department
of Homeland Security Grant #FA8750-12-2-0254, and
Sigma Xi Grants-in-Aid of Research #G201503151198201.

References

Accorsi R. On the relationship of privacy and secure remote logging in
dynamic systems. In: Security and privacy in dynamic environments,
vol. 201. US: Springer; 2006. p. 329e39.

Araiza AG. Electronic discovery in the cloud. Duke L. & Tech; 2011. Rev., 1.
Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, et al.

Provable data possession at untrusted stores. In: 14th ACM confer-
ence on computer and communications security. ACM; 2007.
p. 598e609.

Ateniese G, Di Pietro R, Mancini LV, Tsudik G. Scalable and efficient
provable data possession. In: 4th international conference on security
and privacy in communication networks. ACM; 2008. p. 9e18.

BBC. Lostprophets' Ian Watkins: ‘Tech savvy’ web haul. December 2013.
http://www.bbc.com/news/uk-wales-25435751.

Bellare M, Rogaway P. The exact security of digital signatures-how to sign
with rsa and rabin. In: Proceedings of advances in cryptology,
EUROCRYPT. Springer; 1996. p. 399e416.

Borisov N, Mitra S. Restricted queries over an encrypted index with ap-
plications to regulatory compliance. In: Applied cryptography and
network security. Springer; 2008. p. 373e91.

http://refhub.elsevier.com/S1742-2876(15)00059-6/sref1
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref1
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref1
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref1
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref2
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref2
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref3
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref3
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref3
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref3
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref3
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref4
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref4
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref4
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref4
http://www.bbc.com/news/uk-wales-25435751
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref6
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref6
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref6
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref6
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref7
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref7
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref7
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref7

S. Zawoad et al. / Digital Investigation 14 (2015) S55eS67 S67
Congress of the United States. Sarbanes-Oxley act. 2002. https://www.
congress.gov/107/bills/hr3763/BILLS-107hr3763enr.pdf [accessed
11.04.15].

Court of Appeals, 10th Circuit. Tomlinson v. el paso corp. F. 3d, vol. 653;
2011. p. 1281. no. 10e1385.

Dist Court, ED Michigan. Flagg v. city of detroit. 2008.
Dist Court, SD New York. Dietrich v. bauer. F. Supp. 2d, vol. 76; 1999.

p. 312. No. 95 Civ. 7051 (RWS).
Dist Court, SD Ohio. Brown v. Tellermate holdings ltd; 2014a. Case No. 2:

11-cv-1122.
Dist Court, SD Texas. Quantlab technologies ltd. v. godlevsky. 2014. Civil

Action No. 4: 09-cv-4039.
Dykstra J, Riehl D. Forensic collection of electronic evidence from

infrastructure-as-a-service cloud computing. Rich JL Tech 2012;19:1.
Erway C, Küpçü A, Papamanthou C, Tamassia R. Dynamic provable data

possession. In: 16th ACM conference on computer and communica-
tions security. ACM; 2009. p. 213e22.

FRCP. Rule 34. 2006. https://www.law.cornell.edu/rules/frcp/rule_34.
FRCP. Rule 37. 2006. https://www.law.cornell.edu/rules/frcp/rule_37.
FRD. Zubulake v. UBS Warburg LLC; 2003.
FULBRIGHT. Second annual litigation trends survey. 2005. http://www.

fulbright.com/mediaroom/files/fj0536-us-v13.pdf.
Gartner. Gartner says that consumers will store more than a third of their

digital content in the cloud by 2016. 2012. http://www.gartner.com/
newsroom/id/2060215.

Hasan R, Winslett M. Trustworthy vacuuming and litigation holds in long-
term high-integrity records retention. In: 13th International confer-
ence on extending database technology. ACM; 2010. p. 621e32.

Holt JE. Logcrypt: forward security and public verification for secure audit
logs. In: 2006 Australasian workshops on grid computing and e-
research, vol. 54. Australian Computer Society, Inc.; 2006. p. 203e11.

InfoLawGroup LLP. Legal implications of cloud computing part 4.5. 2010.
http://goo.gl/rzJe2e.
Katz L. Balancing act: ethical dilemmas in retaining e-discovery consul-
tants. Geo J Leg Ethics 2009;22:929.

K and L Gates. For spoliation, court holds defendant in contempt, orders
$600,000 to be paid to plaintiff, $25,000 to be paid to the court. 2012.
http://goo.gl/W7Ph7b.

Mitra S, Winslett M, Borisov N. Deleting index entries from compliance
storage. In: 11th International conference on extending database
technology: advances in database technology. ACM; 2008a.
p. 109e20.

Mitra S, Winslett M, Hsu WW, Chang KC-C. Trustworthy keyword search
for compliance storage. VLDB J Int J Very Larg Data Bases 2008b;17(2):
225e42.

Nicholson JA. Plus ultra: third-party preservation in a cloud computing
paradigm. Hastings Bus LJ 2012;8:191.

Penard W, Werkhoven T. On the secure hash algorithm family. 2008.
Available at: http://www.staff.science.uu.nl/~werkh108/docs/study/
Y5_07_08/infocry/project/Cryp08.pdf.

Pham C. E-discovery in the cloud era: what's a litigant to do. Hastings Sci
Tech LJ 2013;5:139.

Rashbaum KN, Borden BB, Beaumont TH. Outrun the lions: a practical
framework for analysis of legal issues in the evolution of cloud
computing. Ave Maria L Rev 2014;12:71e149.

Schmidt, O., 2012. Managing a Legal hold on cloud documents. US Patent
App. 13/543,254.

Smith J. Electronic discovery: the challenges of reaching into the cloud. St
Clara L Rev 2012;52:1561.

Stacy S. Litigation holds: ten tips in ten minutes. 2014. http://www.ned.
uscourts.gov/internetDocs/cle/2010-07/LitigationHoldTopTen.pdf.

Zapproved. Eeoc discrimination cases lead to serious sanctions for failures
to issue litigation holds. 2013. http://goo.gl/r4kzAr.

Zawoad S, Dutta AK, Hasan R. SecLaaS: secure logging-as-a-service for
cloud forensics. In: 8th ACM symposium on information, computer
and communications security (ASIACCS). ACM; 2013. p. 219e30.

https://www.congress.gov/107/bills/hr3763/BILLS-107hr3763enr.pdf
https://www.congress.gov/107/bills/hr3763/BILLS-107hr3763enr.pdf
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref9
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref9
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref9
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref10
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref11
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref11
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref12
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref12
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref13
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref13
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref14
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref14
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref15
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref15
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref15
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref15
https://www.law.cornell.edu/rules/frcp/rule_34
https://www.law.cornell.edu/rules/frcp/rule_37
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref18
http://www.fulbright.com/mediaroom/files/fj0536-us-v13.pdf
http://www.fulbright.com/mediaroom/files/fj0536-us-v13.pdf
http://www.gartner.com/newsroom/id/2060215
http://www.gartner.com/newsroom/id/2060215
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref21
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref21
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref21
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref21
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref22
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref22
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref22
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref22
http://goo.gl/rzJe2e
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref24
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref24
http://goo.gl/W7Ph7b
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref26
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref26
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref26
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref26
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref26
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref27
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref27
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref27
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref27
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref28
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref28
http://www.staff.science.uu.nl/%7Ewerkh108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf
http://www.staff.science.uu.nl/%7Ewerkh108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref30
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref30
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref31
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref31
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref31
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref31
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref32
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref32
http://www.ned.uscourts.gov/internetDocs/cle/2010-07/LitigationHoldTopTen.pdf
http://www.ned.uscourts.gov/internetDocs/cle/2010-07/LitigationHoldTopTen.pdf
http://goo.gl/r4kzAr
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref35
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref35
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref35
http://refhub.elsevier.com/S1742-2876(15)00059-6/sref35

	LINCS: Towards building a trustworthy litigation hold enabled cloud storage system
	Introduction
	Background
	Litigation hold and spoliation
	Litigation hold in clouds

	Modeling trustworthy litigation hold in clouds
	Litigation hold model
	Threat model
	Security properties
	Challenges

	The LINCS framework
	Overview
	File upload in LINCS
	File deletion in LINCS
	Verification of litigation hold

	Security analysis
	Security propositions and proofs

	Implementation and evaluation
	Litigation hold verification tool

	Related work
	Conclusion and future work
	Acknowledgment
	References

