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Abstract—URL blacklisting is a widely used technique for
blocking phishing websites. To prepare an effective blacklist, it
is necessary to analyze possible threats and include the identified
malicious sites in the blacklist. Spam emails are good source
for acquiring suspected phishing websites. However, the number
of URLs gathered from spam emails is quite large. Fetching
and analyzing the content of this large number of websites
are very expensive tasks given limited computing and storage
resources. Moreover, a high percentage of URLs extracted from
spam emails refer to the same website. Hence, preserving the
contents of all the websites causes significant storage waste. To
solve the problem of massive computing and storage resource
requirements, we propose and develop CURLA – a Cloud-based
spam URL Analyzer, built on top of Amazon Elastic Computer
Cloud (EC2) and Amazon Simple Queue Service (SQS). CURLA
allows processing large number of spam-based URLs in parallel,
which reduces the cost of establishing equally capable local
infrastructure. Our system builds a database of unique spam-
based URLs and accumulates the content of these unique websites
in a central repository, which can be later used for phishing or
other counterfeit websites detection. We show the effectiveness of
our proposed architecture using real-life spam-based URL data.

Index Terms—Phishing, Cloud, Parallel Architecture, Spam
URL

I. INTRODUCTION

Phishing is one of the biggest ongoing threats to Internet
users, who often become victim of this social engineering
attack and lose their money to criminals. Phishing websites
resemble legitimate websites, such as banks, product vendors,
and service providers. Spam emails can contain URLs of these
phishing websites. The goal of such spam emails is to draw
users to visit phishing websites and deceive them to provide
their private credentials, such as usernames and passwords,
bank account numbers, and credit card numbers with pin codes
on these fake websites. These secret credentials can then be
used by malicious persons to withdraw money from the bank
accounts and perform identity theft [1].

Though researchers have come across different approaches to
detect and block phishing websites, phishing attack techniques
continue to evolve. According to a recent fraud report by RSA,
global losses from phishing are estimated to be at US$1.5
billion in 2012, which is a 22% increase from 2011 [2].
As mentioned in the Anti-Phishing Working Group (APWG)
survey for the first half of 2012, there were at least 93,000
unique phishing attacks using approximately 64,000 unique
domain names worldwide [3], which is an increase compared

to the second half of 2011.
One way to decrease the rate of phishing is to improve the

performance of phishing website detection systems, so that
these websites can be blocked by Internet Service Providers
(ISP) or browsers. However, to identify a phishing website, we
need to access the source of possible phishing websites. The
URL list gathered from spam emails is a big source of suspected
phishing websites. However, the number of URLs coming
from spam emails is very large. The University of Alabama
at Birmingham (UAB) Phishing Data Mining Lab extracts
nearly 1 million URLs daily from its spam email sources [4].
Analyzing this large number of URLs using the local computing
resources is almost an impossible task, considering the time and
storage it requires, and the corresponding expenses. Moreover,
a good percentage of these URLs point to the same website,
which introduces massive storage wastage if we fetch and store
the content of the duplicate websites. A cloud-based parallel
architecture can make it possible to analyze this large number
of URLs coming from spam emails in reasonably short period
of time, while reducing the local storage cost by sending only
the new unique website’s content to the local repository. Finally,
by changing the IP of cloud instances frequently, we can avoid
IP blacklisting by phishers.

To accomplish the goal, we propose CURLA, a cloud-based
distributed and parallel content fetching and analyzing archi-
tecture that improves the performance of malicious websites
detection and reduces the local storage cost by storing the
contents of unique websites only. The spam database we used is
located at UAB Phishing Data Mining Lab [4]. Whenever a new
URL appears from spam emails, an Amazon Elastic Computing
Cloud (EC2) [5] instance is assigned to fetch the content from
the URL. After fetching the content, the instance generates
MD5 hashes of the fetched files and compares with the
previously stored hashes. Instead of checking the hash of one
file with all the individual hash of previously stored websites’
files, we propose a Bloom filter-based optimization technique,
which improves the performance in terms of time and space
significantly. When the matching algorithm finds a website as
new, i.e. which has not been fetched before, the content of that
website is forwarded to the local UAB storage. Otherwise, the
website is marked as a duplicate copy of a previously found
website. CURLA provides two levels of parallelism: machine
level and thread level. While thread level parallelism is easily



achievable using local infrastructure, machine level parallelism
using local infrastructure incurs massive cost and does not
provide scalability. Using Amazon EC2 instances, however, we
can scale the machine level parallelism to any desired level
with little cost. Moreover, by changing the IP of the Amazon
EC2 instances, we can protect the fetcher machines from being
reverse blacklisted [6].

Contributions: The contributions of this paper are as follows:
1) We propose CURLA, a cloud-based distributed and

parallel architecture to fetch and analyze large number of
malicious websites’ content in a reasonably short period
of time.

2) CURLA removes the duplicate websites to rapidly
identify malicious websites and reduces the local storage
cost since we no longer need to store the content of
duplicate websites.

3) We propose a Bloom filter-based website matching algo-
rithm, which provides better space and time complexity
compared to traditional matching procedures.

4) CURLA can be effectively scaled up to fetch and analyze
large number of URLs by leveraging the scalability
provided by cloud computing platforms. Based on
workload, we can easily add more computing nodes
with little configuration.

Organization The rest of the paper is organized as follows:
Section II discusses the motivation behind this work. In Section
III, we provide the architecture and workflow of CURLA.
Section IV provides the experimental result, and Section V
discusses the effects of utilizing CURLA on different aspects
of counterfeit website detection. Section VI provides a review
of related work and finally, we conclude in Section VII.

II. RESEARCH MOTIVATION

A successful phishing attack consists of two parts: first,
the creation of a fake website; and second, advertising the
counterfeit website by the distribution of spam emails asking
people to visit the site and share their login credentials. Today’s
spam emails are sufficiently personalized to deceive users and
to make them follow the URL of phishing websites either by
fear or greed. To prevent users from visiting known phishing
websites, web browsers or ISPs often maintain a blacklist. To
create the blacklist of phishing websites, we need to know
which websites are real phishing websites and which are
legitimate websites. URLs collected from spam emails is a
great source of identifying potential phishing websites, since
spam email is the most popular medium to spread the URLs of
phishing websites. Besides blacklisting, security professionals
at the victim organization, i.e. the one that is being imitated,
must determine from a large collection of potential phishing
sites which sites are actually phishing sites and are targeting
their organization. A large collection of URLs can be extracted
from spam emails targeting the victim, but then must be
reviewed to find the phishing sites, which need to have an
incident response action taken against them. However, the
number of URLs collected from spam emails is very large,

and examining and analyzing the URLs manually to determine
whether or not a URL represents a legitimate website would
be very difficult because of the amount of time, labor, and
expense associated with it.

To overcome the problem of manual review, researchers
proposed several content-based phishing website detection
methods for automating the determination of phishing websites
[7], [8], [9]. Content-based detection techniques generally
download the content hosted at the URL and use features
extracted from the content to check whether the website
currently under review is sufficiently similar to an already
confirmed phishing website. To use this approach, we need to
fetch the content of all the websites found from spam emails.
After that, we match the content with the previously confirmed
phishing websites.

However, because of the large number of URLs coming from
spam emails, there are two major problems when we want to
analyze all the URLs in this manner. First, as fetching and
analyzing a website’s content require significant amount of time,
the incident response time will be high if we cannot fetch and
analyze large number of websites simultaneously. The response
time is critical here because the success of phishing attacks
depends on the longevity of phishing websites. Rapid action
taken against the phishing websites can reduce the number of
victims. Second, a significant portion of URLs point to the
same website. Hence, a significant amount of computational
and storage resources are wasted on these duplicated websites.
For example, if the contents of one website requires 5MB
and there are 200,000 duplicate instances of that website’s
URL, there will be 1TB of storage waste. Therefore, if we
can populate a database of URLs that point to only unique
websites and build a repository of those unique websites (prior
to content-based phishing website identification), we can save
a large amount of storage and identify a phishing website with
greater efficiency.

To provide such a database and website repository service,
we need to fetch and analyze all the URLs coming from spam
emails and detect whether a URL points to a previously fetched
website. Given the large number of URLs, we need a very
costly local infrastructure to provide the desired functionality
in a reasonable time period. Moreover, local infrastructures
suffer from fixed public IP addresses, which can be blocked
by malicious websites after a few attempts. As a cloud
infrastructure is cost effective than a local infrastructure [10],
using a cloud-based distributed architecture, we can achieve
desired performance at a low cost. Additionally, we can change
the public IP address of the cloud instances dynamically for
not being reverse blacklisted [6].

III. CLOUD-BASED SPAM URL ANALYZER

The two main objectives of CURLA are to improve the
performance of website analyzing by introducing parallelism,
and to reduce the local storage cost by storing the contents
of unique websites only. In CURLA, we used a message
passing-based distributed and parallel architecture to fetch
and analyze a large number of websites simultaneously using



Amazon EC2 instances. CURLA also reduces the storage cost
by distributing the storage of duplicate websites among multiple
cloud machines. In this section, we provide the architecture
and work flow of CURLA.

A. Architecture
Figure 1 depicts the overview of the system and each of the

modules are described in detail below:
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Fig. 1: CURLA System Architecture

Controller: The controller module triggers the total operation
of the system. Controller gets URLs from a source of URLs.
This URL source is developed by extracting URLs from spam
emails. Controller is responsible to manage the fetcher and
uploader message queues. It can also be enhanced to manage
the Amazon EC2 instances. Controller has a list of fetcher
queues. After receiving an URL from the URL source, the
controller sends a URL-fetch-request message to a fetcher
queue selected by round-robin fashion.
Fetcher Message Queue: Each of the fetcher message queues
is an instance of Amazon Simple Queuing Service (SQS) [11].
Based on the number of fetcher instances, number of fetcher
message queues can vary, where one queue is dedicated for
one fetcher instance. It stores the URL-fetch-request messages
received from the controller and dispatches to fetcher upon
request. The queuing functionality is provided by the Amazon
SQS API.
Fetcher: The fetcher module runs on Amazon EC2 instance.
It is connected with the controller module through the fetcher
message queue. Fetcher module receives a URL-fetch-request
message from the fetcher message queue, then fetches the
website content from the URL, and analyzes to check whether
the website is new or duplicate copy of any previously
fetched website. This module is capable of handling multiple
URL-fetch-requests simultaneously. The task of fetching and
analyzing one website is encapsulated into one thread and
after receiving a message from the fetcher message queue, the
fetcher spawns a thread. In this way, we can achieve thread
level parallelism. Moreover, using multiple fetcher queues and
fetcher instances, we can execute the fetching and analyzing
task parallely in multiple machines, which gives us machine
level parallelism.

Uploader Message Queue: Uploader Queues are also in-
stances of Amazon SQS. Each uploader queue is attached with
one fetcher module and one uploader module. It stores the
website-upload-request messages received from the fetcher and
dispatches to the uploader upon request.

Uploader: The uploader module is a FTP client running on
Amazon EC2 instances and is responsible to upload the local
copy of a fetched website to the central website repository. It
receives a website-upload-request message from the uploader
queue and uploads the website content to the central website
repository using FTP. Each uploader module is connected with
one fetcher module through an uploader message queue. One
connected fetcher and uploader should run in the same Amazon
EC2 instance to resolve the location of the local copy. This
module is capable of handling multiple website-upload-request
messages simultaneously. One uploader can spawn multiple
threads for multiple upload requests. Additionally, multiple
uploader instances connected with multiple uploader message
queues provide machine level parallelism for website uploading.

URL Database: URL database contains information of all the
unique and duplicate URLs. Using the hash of website files, we
derived a Bloom filter-based algorithm to match the uniqueness
of two websites. Hence, for each unique URL, we store only
one Bloom filter [12] to preserve the hash information of all
the downloaded files of a website.

Central Website Repository: This module stores the content
of all the unique websites. An FTP server is running on this
module to accept FTP connection from the uploader modules.

B. Work Flow

After receiving a new URL from the URL source, the
controller sends that URL to a fetcher message queue. Once
a fetcher instance receives this message, it starts the task of
fetching and analyzing for the received URL. If the website is
found as new, a website-upload request message is dispatched
from a fetcher to an uploader using an uploader message queue.
After receiving a website-upload request message, the uploader
uploads the website content to the central website repository.
The work flow of CURLA is depicted in Figure 2.

The process of getting a new URL from the URL source and
sending it to a fetcher message queue is a straightforward task.
This process can be executed from any local machine. The
URL-fetch-request message contains only the URL path. One
fetcher module is attached with one fetcher queue. The fetcher
starts working after having a URL-fetch-request message in
its fetcher message queue. Hence, the first component of the
fetcher module is a message queue listener. The listener always
searches for new messages in its associated fetcher queue.
Whenever there is a new message found by the listener, it
spawns a fetcher-analyzer thread.

The fetcher-analyzer thread has two functionalities. It first
fetches the content of the website represented by a given URL,
and analyzes whether the fetched website is new or a duplicate
copy of any previously found website. Fetching is performed
using an automated web crawler that uses GNUs wget [13]
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Fig. 2: Work Flow of CURLA

with one level of recursive fetching, time out, and ignoring
robots options.

A naive approach of analyzing a website’s content for
finding duplicate website is to generate the hash of all the
files (e.g., html, css, javascript, images, etc.) of the website
and match the file-hashes with all the file-hashes of each of
the websites found previously. If the number of files for the
new website is m, the number of previously found website is
n, and the average number of files for the previously found
websites is p, then the complexity of the naive approach will be
O(mnp). To use this approach, we also need to store the hash
of all files found for each of the websites. Hence, the storage
requirement is O(np). But our proposed Bloom filter-based
matching algorithm reduces the time complexity to O(mn)
and storage complexity to O(n).

A Bloom filter is a probabilistic data structure with no
false negatives, which is used to check whether an element
is a member of a set or not [12]. Bloom filter stores the
membership information in a bit array. Element insertion time
and membership checking can be done in constant time. The
only drawback of the Bloom filter is the probability of finding
false positives. However, we can reduce the probability of false
positives by using a larger bit array.

To develop a Bloom filter-based algorithm, we use one
Bloom filter to store the membership information of all the
files of one website. Hence, for n number of websites, there
will be n number of Bloom filters. When a website is found as
new, we first create an empty Bloom filter for the new website.
To insert the membership information of a file of that website
into the Bloom filter, we first create a MD5 hash of the file
(referred as file-hash). After that, we generate the k number
of bit positions for the file-hash by hashing the file-hash for
k times, and update those k bit positions of the Bloom filter.
In this way, we can preserve membership information of large
number of files in a single Bloom filter. Since we do not need
to store the hash of each files of a website, the storage cost
reduces from O(np) to O(n).

At the time of matching the content of a newly fetched
website, the analyzer selects a previously found website and its
Bloom filter. Then, for each of the files of the new website, it
creates a MD5 hash of the file and checks whether it exists in
the selected Bloom filter or not. The membership information
checking can be done in constant time. If a certain percentage
of files (we used 90%) of the new website exists in the selected

Bloom filter, we then say that the new website is a duplicate
copy of the selected website. Otherwise, the new website will
be treated as a unique website. For m number of files of the
new website, this operation can take maximum O(m) time.
Hence, for n number of previously stored websites, the worst
case time complexity will be O(mn). Algorithm 1 describes
the matching procedure in detail.

Algorithm 1 Website Matching Using Bloom Filter
1: bloomFilter ←Bloom filter with 0.1% false possitive
2: probability for 100 elements
3: fileList← List < File >
4: fileHashList← List < String >
5: urlBloomList← get bloom filter content for all the
6: previously found websites
7: for all file in fileList do
8: insert MD5(file) to fileHashList
9: end for

10: for all urlBloom in urlBloomList do
11: clear bloomFilter
12: set content of urlBloom in bloomFilter
13: matchCount← 0
14: for all fileHash in fileHashList do
15: if bloomFilter contains fileHash then
16: matchCount← matchCount+ 1
17: end if
18: end for
19: if matchCount/size of fileHashList >= desired matching percentage

then
20: matched successfully and return
21: else
22: not matched
23: end if
24: end for

After analyzing the content of a website, if the website is
found to be new, the analyzer saves the URL along with its
Bloom filter content in the unique URL table of the URL
database and issues a upload-request message to the uploader
message queue. The upload request message consists of the
new URL and the location of the fetched content. On the other
hand, if a website is found as a duplicate copy of a previously
found website, we then store this URL in a duplicate URL
table with the matched website’s identification. In this case,
the fetcher does not issue any upload-request message.

The Uploader module has a message queue listener, which
listens for any new upload-request message and initiates a
thread to handle the upload-request. Task of an uploader thread
is to communicate with the central website repository through



FTP and transfer the local copy of a website to the central
repository.

IV. EXPERIMENT AND EVALUATION

In this section, we provide an overview of the working data
set, experimental setup, and evaluation of CURLA.

A. Data Set

The dataset for this research is from the UAB Phishing Data
Mine [4]. Table I presents number of spam emails, total no.
of URLs, and no. of URLs that have unique full path gathered
between Nov 7 to Nov 11, 2013. We can reduce the number
of URLs to a great extent by checking the uniqueness of URL
path. Even after this reduction, number of unique URLs is
more than 200,000 on each day. A good percentage of these
unique URLs are redundant that we can only identify after
analyzing the content of the websites.

Date No. of Spams No. of URLs No. of Distinct
URLs

Nov 7 909,471 1,419,667 427,185
Nov 8 959,124 1,285,033 272,487
Nov 9 759,293 958,076 242,210
Nov 10 859,277 874,654 202,696
Nov 11 946,668 1,026,624 274,226

TABLE I: URL Statistics

B. Experimental Setup

System Configuration: In our experiments, we used a Dell
laptop running Debian 3.2.46-1 on Intel Core 2 Duo CPU
(2.66GHz) with 4GB of RAM as the controller. The controller
program is built on OpenJDK (version:1.6.0 27). We used
AWS SDK for Java [14] to manage the fetcher and uploader
message queues.

We used four Amazon EC2 small instances (m1.small) to
fetch, analyze and upload the unique content to the central
repository. Each of the instances running Ubuntu 12.04.2 LTS
operating system and as reported by the OS, the CPU is single
core Intel(R) Xeon(R) CPU E5-2650 (2.00GHz) with 1.6GB
RAM. The fetcher and uploader running on these instances
are built on OpenJDK(version:1.6.0 27).

We used one Amazon EC2 large instance (m1.large) as a
central repository of the unique websites and URL database.
The OS of this instance is Ubuntu 12.04.2 LTS, and the CPU
has dual Intel(R) Xeon(R) E5507 (2.27GHz) processors. A
FTP server was installed in this machine to upload the website
content through FTP. The URL database was maintained by
PostgreSQL 9.1.9.

C. Evaluation

In our experiments, we did not use all the URLs, rather
we used 7600 unique URLs of Nov 11th divided in five
groups, each contains 100, 500, 1000, 2000, and 4000 URLs
respectively and no URL is common between two groups.
While referring to individual date, we choose Nov 11, which
refers to most recent data. Table II presents some statistics
of URL analyzing results. As we notice from Table II, for
a large number of URLs, we failed to fetch the content. A

possible reason is that the websites went down before fetching.
We ignore the robots.txt file in wget, hence, the wget is not
blocked because of the robots.txt. For a small percentage of
URLs (average 4%), we could not determine their status.

No. of No. of No. of No. of % of Websites
Test Unique Duplicate Websites Successfully
URLs Websites Websites Failed to Fetch Analyzed
100 40 11 43 94.00
500 130 126 237 98.60
1000 224 283 457 96.40
2000 460 604 837 95.05
4000 855 1287 1701 96.08

TABLE II: URL Analyzing Results
Storage Savings: As we notice from Table II, a large number
of URLs point to same website, we can save a significant
amount of storage of local repository by ignoring the duplicate
content. Figure 3a presents the amount of duplicate storage
that we can save while analyzing a set of unique URLs. The
best fit function that matches with the experimental result is:

Storage Savings = 2975 ∗No. of URL(Bytes) (1)

From this function, we can interpolate the amount of storage
that we can save in each day or in a given time period.
According to equation 1, on Nov 11 2013, we can save
2975 ∗ 274226 = 778 Mega Bytes of storage. Considering
the number of such URLs easily reaching to billions and their
ever increasing nature, the storage saving can easily reach in
units of Terra Bytes.

We can also estimate the amount of storage savings from the
ratio of storage required for duplicate websites to the unique
websites. Figure 3b represents the ratio of duplicate vs. unique
storage with the increase in number of URL. The best fit
function which matches with the experimental result is:

% of Duplicate Storage = 0.0019 ∗No. of URL (2)

According to equation 2, on Nov 11, storage required for
duplicate websites is 5 times higher than the storage required
for unique websites.

From the amount of storage that we can save in the local
infrastructure, we can determine how much this storage would
cost if we had preserved the duplicate content. Dutta et al.
proposed a full cost accounting model to identify the cost of
one byte and according to their case study, cost per byte for the
data center of Computer and Information Sciences department
of UAB is 71.51X103 pico cents [15]. We used this value to
identify the cost that we can save due to duplicate storage,
which is illustrated in Figure 3c. To interpolate the amount of
cost in a single day, we identify the following best fit function:

Cost = 0.22 ∗No. of URL(mili cent) (3)

According to Equation 3, for the 274,226 unique URLs of
Nov 11, we can save approximately $0.60.

Table III represents the estimated amount of duplicate storage,
ratio of duplicate storage and unique storage, and cost incurred
for the duplicate storage for the five days of data.
Estimated Number of Instances: We can estimate the num-
ber of required Amazon instances based on some assumptions.
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Fig. 3: Storage Savings Analysis

Date No. of Duplicate Duplicate Duplicate
Distinct Storage vs. Unique Storage
URLs (GB) Storage (%) Cost (Cents)

Nov 7 427,185 1.18 811.65 93.98
Nov 8 272,487 0.75 517.72 59.95
Nov 9 242,210 0.67 460.2 53.29
Nov 10 202,696 0.56 385.12 44.59
Nov 11 274,226 0.75 521.03 60.33

TABLE III: Interpolated Results of Storage Savings

We assume that time required to fetch a website by small
(m1.small) instance is tf seconds, time to analyze is ta, and
time to send the upload request is tr. Hence, processing time
for one URL by one m1.small instance is (tf + ta + tr) seconds.
If we want to process U number of URLs and allow H number
of threads for each instance, then the total number of instances
(N) required to process all the URLs in T seconds can be
defined by following equation:

N =
U(tf + ta + tr)

T ∗H
(4)

For a realistic assumption of the required number of
instances, we measured tf, ta, tr, which is represented in
figure 4. As a lower bound, we can select the average time of
each step, and for higher bound, we can select the sum of
average and standard deviation time. According to Equation 4,
the lower bound for estimated number of instances (Nlower)
to process 10,000 URLs in 50 minutes, with maximum 10
threads is:

Nlower =
10000(tf,avg+ta,avg+tr,avg)

50∗60∗10

Nlower = 10000(8.7+0.19+0.47)
50∗60∗10 = 3 (Approximately)

The corresponding upper bound is:

Nupper = 10000(323.91+3.81+5.98)
50∗60∗10 = 111 (Approximately)

Estimated Cost: Based on the estimated number of instances,
we measured the estimated cost to run the system using small
(m1.small) instances. Cost of running a small instance for one

hour is $0.06 [16]. According to Equation 4, we can determine
estimated number of instances to process 274,226 URLs of
Nov 11, 2013 for different completion time, with maximum 10
threads and can calculate the required cost, which is represented
in Table IV.

Targeted Nupper Nlower Costupper($) Costlower($)
Time(Hour)
1 2542 71 152.52 4.26
2 1271 35 152.52 4.20
3 847 24 152.46 4.32
4 635 18 152.40 4.32
5 508 14 152.40 4.20
6 423 12 152.28 4.32
7 363 10 152.46 4.20

TABLE IV: Estimated Cost of Using Amazon EC2

However, the cost represented in table IV will be nearly
six times less than the existing cost if we go for three years
contract. There are other costs for Amazon SQS for the queuing
service, which is not significant for one day ($0.50 per 1 million
Amazon SQS Requests [17]). Data in and out form Amazon
EC2 instance is also not very significant (Up to 10 TB / month
0.12USD per GB [16]).
Bloom Filter-based Matching Algorithm: Performance
improvement of Bloom filter-based matching algorithm is
depicted in Figure 5, which provides the analyzing time for
one new website with the increase in number of previously
found websites. For better measurement of time, we ran the
experiment in offline mode using a single threaded program.
For the 2,000 URLs of experiment, difference between our
proposed approach and naive approach is nearly 1 seconds,
however, for the URLs of Nov 11 the difference is 2.34 minutes.

V. DISCUSSION

In this section, we discuss the effect of CURLA for phishing
website detection and applicability of CURLA in other areas.
Cost vs. Performance: As we notice from Table IV, the
cost of using Amazon EC2 instances does not decrease with
lower performance. Hence, we can scale up the distributed
infrastructure according to our desired performance without
any extra cost. For average case, we can analyze all the URLs
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Fig. 4: Time Required in Different Steps
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Fig. 5: Performance Analysis of Matching Algorithm

of Nov 11 2013 in one hour with approximately $4. However,
to achieve the similar performance using local infrastructure,
we need 71 computers. Developing such a local infrastructure
requires a great deal of investment and maintenance cost. We
also notice that on Nov 7th, there are almost twice the amount
of URLs compared to other 4 days. It is difficult to scale up
the local infrastructure when there will be more URL, or scale
down when there will be less URL, which is easily achievable
using cloud infrastructure. On the other hand, using a small
fixed local infrastructure, for example using 10 computers, the
whole task will require nearly 7 hours for the URLs of Nov
11. For phishing detection, the response time should be as low
as possible to minimize the effect of phishing and CURLA
helps to minimize the phishing detection time in least cost.

Effect on the Performance of Phishing Website Detec-
tion: Besides saving the storage for duplicate websites,
identifying the unique websites has effect on the performance
of phishing website detection. Figure 6 represents the growth
of number of duplicate websites with the increase in number
of URLs. The best fit function that we found for experimental
data set:
No. of Duplicate Websites = 0.333 ∗No. of URL (5)
Based on Equation 5, we can project that there will be

approximately 91,318 duplicate websites among the 274,226
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Fig. 6: Growth Rate of Duplicate Websites

URLs of Nov 11. Using the data provided by CURLA, a
content-based phishing detection task does not look into these
duplicate websites. If one phishing detection task requires 1
second, then we can save nearly 25 hours of computing time
for the 91,318 duplicate websites.

The proposed scheme can also help to increase the phishing
identification rate. Current approach of acquiring suspected
phishing URLs from spam emails is analyzing the spam emails
to determine whether the spam contains a phishing URL. This
includes: searching for known brands, identifying pattern of
email subject, etc. However, the phishers are also improving in
writing the content of spam emails, or frequently changing the
structure of the spam emails to spoof this technique. Hence,
there is a chance to miss a possible phishing website using this
technique. The only way to detect this is to fetch and analyze
the content of the website represented by the URL. Hence,
using the data gathered by CURLA, we can improve the rate
of phishing website identification.

Other Application Area: Besides phishing websites, CURLA
can be effectively used in identifying other types of counterfeit
websites, which are also advertised by spam emails. For
example, a significant portion of websites, we fetched are
counterfeit websites for goods. These websites sell branded
goods, which they are not authorized to sell. The organization



that owns the original brand needs to know which counterfeit
websites sell their products to take necessary legal steps against
those websites. Another example is illegal business websites,
e.g., fake insurance companies, or business companies that
send illegal spam campaign. To detect these illegal websites,
we can fetch and analyze the content of such websites.

VI. RELATED WORK

Content based phishing website detection has been explored
by researchers and there are various established approaches
[7], [18], [19], [20]. Content-based detection can combine
techniques that draw features from the text of the main index
page, characteristics of sets of component files, and measures of
visual similarity among websites to identify phishing attacks.
However, none of these solutions use cloud-based content
fetching approach. Li et al. proposed a cloud-based phishing
detection system named LARX that uses network traffic data
archived at a vantage point and analyzes these data for phishing
attacks [21]. All of LARX’s phishing filtering operations use
cloud computing platforms and work in parallel to handle large
volume of data in a reasonable time.

The closest work related to our work is conducted by
Ferguson et al. [6], where they proposed a cloud-based content
fetching solution for phishing website analysis. Their main
focus is to conceal anti-phishing probes from being detected
and reverse blacklisted by the phishing websites. They used
multiple cloud providers, such as Amazon EC2, Rackspace, and
GoGrid, to initiate cloud instances and fetch website content.
The purpose of the cloud-based clients is to fetch website
content and send any data back to the controlling server to
be stored. The controlling server serves as bridge between
phishing database and cloud-based clients. We use the concept
of concealing cloud-based website fetcher as stated in [6].
However, our system focuses on fetching the content of URLs
coming from spam emails and finds the URLs with unique
content that accomplishes different goals from [6].

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented CURLA – a highly
scalable and distributed cloud-based framework for analyzing
the content of malicious websites. Deploying and maintaining a
local infrastructure equivalent to CURLA will be cost inefficient.
As CURLA only fetches and stores new and unique content,
it can greatly reduce the cost of malicious website analysis
in terms of time, storage, and money. Our experimental result
shows the effectiveness of CURLA on small datasets and we
project a large amount of savings in terms of storage, time, and
cost for large scale datasets. The Bloom filter based website
matching algorithm can also be blended with any other content-
based counterfeit website detection methodologies. Utilizing
our proposed system can also help to improve the rate of
phishing and other types of counterfeit websites detection.

In future, we are planning to run CURLA for larger datasets
and use different statistical methods to evaluate whether the
best fit functions derived from the small datasets are also
suitable for larger datasets. Moreover, a website that we detect
as unique by comparing with the websites found in a single

day may not be unique if we also consider the websites found
in previous days. Hence, we plan to evaluate the performance
of CURLA in detecting duplicate websites over a longitudinal
history of data. Besides these, we plan to do a comprehensive
cost analysis between local infrastructures and cloud-based
infrastructures for large-scale spam url datasets.
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